Ab initio perspective on hydrogenated amorphous silicon for thin-film and heterojunction photovoltaics

Philippe Czaja
Ab initio perspective on hydrogenated amorphous silicon for thin-film and heterojunction photovoltaics

Philippe Czaja
Contents

1 Introduction

2 Theory and Methods

2.1 Density functional theory

2.1.1 The many-particle Hamiltonian

2.1.2 The Hohenberg-Kohn theorem

2.1.3 The Kohn-Sham formalism

2.1.4 The exchange-correlation functional

2.1.5 The plane-wave pseudopotential method

2.2 Quasiparticle corrections

2.2.1 Quasiparticles

2.2.2 GW approximation

2.2.3 Practical calculation

2.2.4 Scissors shift

2.3 Characterization methods

2.3.1 Radial pair correlation function

2.3.2 Bonding and the ELF

2.3.3 Density of states

2.3.4 Electronic localization

2.3.5 Mobility gap

2.3.6 Optical characterization

3 Hydrogenated amorphous silicon

3.1 Introduction

3.2 Computational details

3.3 Structural properties

3.4 Electronic properties

3.5 Optical properties

3.5.1 G_0W_0 calculations

3.5.2 Absorption spectrum

3.5.3 JDOS and optical matrix elements

3.6 Conclusions

4 The a-Si:H/c-Si interface

4.1 Introduction

4.2 Computational details

4.3 Structural and electronic properties

4.3.1 Atomic structure

4.3.2 Density of states and band offsets

4.3.3 Localized states

4.4 Evolution upon high-temperature annealing

4.4.1 Structural evolution

4.4.2 Evolution of electronic properties

4.5 Effect of surface passivation
Ab initio perspective on hydrogenated amorphous silicon for thin-film and heterojunction photovoltaics

Philippe Czaja