Spin-orbitronics at the nanoscale: From analytical models to real materials

Juba Bouaziz
Spin-orbittronics at the nanoscale: From analytical models to real materials

Juba Bouaziz
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>3</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>5</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>9</td>
</tr>
<tr>
<td>2 Theoretical foundations</td>
<td>15</td>
</tr>
<tr>
<td>2.1 The many-body problem</td>
<td>16</td>
</tr>
<tr>
<td>2.2 Density functional theory (DFT)</td>
<td>16</td>
</tr>
<tr>
<td>2.2.1 Approximations to the exchange-correlation energy functional</td>
<td>18</td>
</tr>
<tr>
<td>2.2.2 DFT for spin-polarized systems</td>
<td>18</td>
</tr>
<tr>
<td>2.3 Green functions and embedding technique</td>
<td>19</td>
</tr>
<tr>
<td>2.3.1 Ground state expectation value of an observable from the Green function</td>
<td>21</td>
</tr>
<tr>
<td>2.4 The Korringa-Kohn-Rostoker Green function method</td>
<td>21</td>
</tr>
<tr>
<td>2.4.1 Free electrons</td>
<td>22</td>
</tr>
<tr>
<td>2.4.2 Single site problem</td>
<td>23</td>
</tr>
<tr>
<td>2.4.3 Multiple scattering problem</td>
<td>25</td>
</tr>
<tr>
<td>2.4.4 Charge neutrality and Lloyd’s formula</td>
<td>26</td>
</tr>
<tr>
<td>2.4.5 Spin-orbit interaction in KKR</td>
<td>27</td>
</tr>
<tr>
<td>2.4.6 KKR in a projection basis</td>
<td>29</td>
</tr>
<tr>
<td>2.5 Magnetic anisotropy</td>
<td>30</td>
</tr>
<tr>
<td>2.5.1 Magnetic force theorem</td>
<td>31</td>
</tr>
<tr>
<td>2.5.2 The torque method</td>
<td>32</td>
</tr>
<tr>
<td>2.6 Time-dependent density functional theory (TD-DFT)</td>
<td>34</td>
</tr>
<tr>
<td>2.6.1 Linear response theory within TD-DFT</td>
<td>35</td>
</tr>
<tr>
<td>2.6.2 Spin splitting sum rule</td>
<td>38</td>
</tr>
<tr>
<td>2.6.3 Taylor expansion of the Kohn-Sham susceptibility</td>
<td>39</td>
</tr>
<tr>
<td>2.6.4 Mapping TD-DFT into the Landau-Lifshitz-Gilbert equation</td>
<td>40</td>
</tr>
<tr>
<td>2.6.5 Zero-point spin-fluctuations</td>
<td>42</td>
</tr>
<tr>
<td>2.6.6 Renormalization of the magnetic anisotropy energy</td>
<td>43</td>
</tr>
</tbody>
</table>
Table of Contents

2.7 Technical aspects of the KKR codes and new implementations
 2.7.1 KKR codes available in Jülich
 2.7.2 New implementations in the KKR-impurity and KKR-susc codes

3 Scattering of Rashba electrons off magnetic impurities
 3.1 Rashba Hamiltonian
 3.2 Rashba Green function
 3.3 Transition matrix
 3.4 Friedel oscillations
 3.4.1 Friedel oscillations in the induced charge density
 3.4.2 Friedel oscillations in the induced spin magnetization density
 3.5 Interactions among magnetic impurities deposited on a Rashba electron gas
 3.5.1 Extended Heisenberg model
 3.5.2 Mapping procedure
 3.6 Magnetic properties of dimers
 3.6.1 RKKY-approximation
 3.6.2 Beyond the RKKY-approximation
 3.6.3 Connecting the different parts of the exchange interaction tensor
 3.6.4 Magnetic configurations of dimers
 3.7 Magnetic properties of complex nanostructures
 3.7.1 Magnetism of linear chains
 3.7.2 Trimer
 3.7.3 Hexagon
 3.7.4 Heptamer
 3.8 Transport properties of Rashba electrons
 3.8.1 Scattering States
 3.8.2 Cylindrical expansion of the Green function and the t-matrix
 3.8.3 Residual resistivity tensor from linear response theory
 3.8.4 Resistivity tensor in absence of the spin-orbit interaction
 3.8.5 Residual resistivity tensor within the s-wave approximation
 3.8.6 Residual resistivity tensor results and discussions
 3.9 Orbital magnetization in a Rashba electron gas
 3.9.1 Rashba spin-orbit interaction as a vector field
 3.9.2 Ground state charge current induced by a single magnetic impurity on a Rashba electron gas
 3.9.3 Orbital magnetization of magnetic impurities on a Rashba electron gas from ground state charge currents
 3.9.4 Orbital magnetization of a single adatom on a Rashba electron
 3.9.5 Orbital magnetization of a dimer on a Rashba electron gas from ground state charge currents
 3.9.6 Orbital magnetization of trimer on a Rashba electron gas from ground state charge currents
 3.10 From Rashba surface states to topological insulators
 3.11 Summary and outlook
4 Magnetic impurities in topological insulators
4.1 Introduction to topological insulators 108
4.2 Bi₂Te₃ and Bi₂Se₃ as prototypical topological insulators 113
4.3 Ground state properties of 3d and 4d magnetic impurities embedded in
Bi₂Te₃ and Bi₂Se₃ ... 115
4.3.1 3d magnetic impurities embedded in Bi₂Te₃ surface 117
4.3.2 4d magnetic impurities embedded in Bi₂Te₃ surface 120
4.3.3 3d and 4d magnetic impurities embedded in Bi₂Se₃ surface .. 122
4.4 Investigating the in-gap states .. 123
4.5 Anderson model for the in-gap states 124
4.6 Magnetocrystalline anisotropy ... 129
4.6.1 Magnetocrystalline anisotropy for 3d and 4d impurities in Bi₂Te₃ 130
4.6.2 Magnetocrystalline anisotropy and real space cluster size 134
4.6.3 Magnetocrystalline anisotropy for 3d and 4d impurities in Bi₂Se₃ 137
4.6.4 Magnetocrystalline anisotropy for 3d and 4d impurities in bulk
Bi₂Te₃ ... 137
4.7 Spin dynamics of 3d and 4d impurities in topological insulators ... 140
4.7.1 Transversal dynamical response 142
4.7.2 Spin excitations of 3d impurities in Bi₂Te₃ 142
4.7.3 Spin excitations of 4d impurities in Bi₂Te₃ 144
4.7.4 Spin excitations of 3d and 4d impurities in Bi₂Se₃ 147
4.7.5 Impact of the surface state on spin excitations of 3d and 4d impu-
rities in Bi₂Te₃ .. 149
4.7.6 Transversal zero-point spin-fluctuations of 3d and 4d impurities in
Bi₂Te₃ and Bi₂Se₃ ... 149
4.7.7 Renormalization of the MAE from the ZPSF 153
4.8 Summary and outlook .. 154
5 Magnetic Skyrmions ... 157
5.1 Introduction to magnetic Skyrmions 158
5.2 Magnetic Skyrmions in Pd/Fe/Ir(111) 159
5.3 Tunneling spin-mixing magnetoresistance 159
5.3.1 TXMR from multiple scattering theory 162
5.3.2 TXMR in the Alexander-Anderson model 164
5.4 Chiral orbital magnetization .. 165
5.4.1 Chiral orbital magnetization in Pd/Fe/Ir(111) 166
5.4.2 Connection between TOM and topological charge 170
5.5 Summary and outlook .. 171
6 Conclusions .. 173
A Derivation of the t-matrix in the s-wave approximation 177
B Extended Heisenberg model for a magnetic dimer 179
C Asymptotic expansion of the Rashba Green function 181
Table of Contents

D Evaluation of the momentum operator matrix elements 183
E Phenomenological derivation of the functional forms 185
F Derivation of the current operator 189

Bibliography 191
List of publications 211
List of tables 213
List of figures 217
Acknowledgments 227
Spin-orbitronics at the nanoscale: From analytical models to real materials

Juba Bouaziz