Variability and compensation in Alzheimer's disease across different neuronal network scales

Claudia Bachmann
Variability and compensation in Alzheimer’s disease across different neuronal network scales

Claudia Bachmann
Contents

Abstract

Überblick

Declaration of contributions

Acknowledgements

1 Introduction

1.1 Alzheimer’s disease - a disease with many facets

1.2 The concept of homeostasis in biology exemplified by neuronal network dynamics

1.3 Homeostasis in neuronal networks suffering Alzheimer’s disease

1.4 Methodological considerations

1.4.1 What does fMRI measure?

1.4.2 Introduction into graph theory

1.4.3 Network simulation and performance measures

1.5 Dealing with Alzheimer’s disease and its effects on homeostatic regulation

2 Inferring health conditions from fMRI-graphs

2.1 Introduction
2.2 Results ... 28
 2.2.1 Selection of clinical use case and fMRI-data acquisition 28
 2.2.2 Calculation of probabilities: exchangeability 29
 2.2.3 Trimming the data space: functional connectivity 32
 2.2.4 Trimming the distribution space: models by sufficiency and generalized normals ... 34
 2.2.4.1 Parametric models ... 34
 2.2.4.2 Models by sufficient statistics 35
 2.2.4.3 Edgeworth’s “method of translation”: generalized normal models .. 36
 2.2.4.4 Generalized normal models in our study 39
 2.2.5 Model comparison and selection 41
 2.2.5.1 Criteria for model comparison 41
 2.2.5.2 Results for our three models 44
 2.2.5.3 Contrast with other model-comparison criteria 45
 2.2.5.4 Final assessment of models 47
2.3 Discussion ... 49
 2.3.1 Summary ... 49
 2.3.2 Comparison with other studies and methods 50
 2.3.3 Possible improvements .. 51
2.4 Methods .. 52
 2.4.1 Data preprocessing .. 52
 2.4.2 The normal model with conjugate prior 53
 2.4.3 Decision theory and utility 54
3 Extraction and analysis of graphs from rfMRI as diagnostic tool for AD 57

3.1 Introduction ... 58

3.2 Results ... 62

3.2.1 Graph construction .. 62

3.2.1.1 Vertex definition by means of clustering 62

3.2.1.2 Edge definition by means of functional connectivity 64

3.2.2 Graph properties .. 66

3.2.3 Evaluation of graph construction methods based on negative surprise 70

3.3 Discussion ... 74

3.4 Methods ... 83

3.4.1 Data acquisition .. 83

3.4.2 Preprocessing of fMRI-data and extraction of cortical data 84

3.4.3 Data-driven and Atlas based clustering of cortical voxels 84

3.4.3.1 Atlas-based clustering 85

3.4.3.2 Ward clustering ... 85

3.4.3.3 Region growing and selection 85

3.4.4 Edge definition .. 87

3.4.5 Graph properties .. 89

3.4.6 Statistical model .. 92

3.4.7 Supportive evaluation measures of graph construction methods 93

3.4.7.1 Significance test ... 93

3.4.7.2 Dendrograms of subject order 93

3.4.7.3 Support vector machines 94

3.5 Supplementary Tables and Figures 94
4 Firing rate homeostasis counteracts synapse loss

4.1 Introduction ... 97

4.2 Results ... 100

4.2.1 Computational network model of Alzheimer’s disease 100

4.2.2 Total synaptic contact area and firing statistics 103

4.2.3 Perturbation sensitivity and linear stability 104

4.3 Discussion ... 109

4.4 Methods .. 115

4.4.1 Network model ... 115

4.4.2 Synaptic contact area and characterization of network activity ... 116

4.4.3 Linearized network dynamics and stability analysis 117

4.5 Supplementary Materials 123

4.5.1 Network model ... 123

4.5.2 Lists of parameters .. 124

4.5.3 Canceling of the synaptic-weight variance by the input variance ... 126

4.5.4 Unspecific synapse loss and homeostasis 126

5 Discussion ... 129

5.1 Summary of the results ... 129

5.2 The reciprocal interactions of different brain scales in Alzheimer’s disease ... 131

5.3 Outlook ... 133

Bibliography ... 137
Variability and compensation in Alzheimer’s disease across different neuronal network scales

Claudia Bachmann