Absolute scale off-axis electron holography of thin dichalcogenide crystals at atomic resolution

Florian Winkler
Absolute scale off-axis electron holography of thin dichalcogenide crystals at atomic resolution

Florian Winkler
Table of contents

List of figures xiii
List of tables xvii
Nomenclature xix

1 Introduction 1

2 Fundamentals of high-resolution transmission electron microscopy 7
 2.1 Setup of a transmission electron microscope 7
 2.2 Electron diffraction 9
 2.3 Electron optical contrast transfer 12
 2.3.1 Image formation in conventional TEM 12
 2.3.2 Wave aberrations 14
 2.3.3 Resolution limiting effects 17
 2.4 Summary 23

3 Off-axis electron holography 25
 3.1 Hologram formation and experimental setup 26
 3.1.1 Partial coherence 29
 3.1.2 Elliptical illumination 32
 3.1.3 Influence of the detector 34
 3.2 Reconstruction of electron wavefunctions 36
 3.2.1 Removal of residual phase modulations in electron wavefunctions 39
 3.3 Mean inner potential 42
 3.4 Mean free path 44
 3.5 Summary 45

4 Two-dimensional materials 47
 4.1 Basic properties of transition metal dichalcogenides 48
 4.2 TEM sample preparation of 2D materials 51
Table of contents

4.2.1 Transfer setup ... 52
4.2.2 Elastomer-based dry transfer of 2D materials 53
4.3 Summary ... 55

5 *In situ* measurement of electrostatic potentials under applied electrical bias 57
5.1 Design and fabrication of specimens for *in situ* electrical biasing experiments 58
5.2 Electrostatic potentials in a capacitor 60
5.2.1 Electrostatic potential measurements using electron holography .. 61
5.2.2 Finite element simulations of electrostatic potentials 68
5.3 Towards an optimized specimen design for *in situ* electrical biasing experiments 72
5.4 Off-axis electron holography of electrically biased MoS$_2$ 75
5.4.1 Current-voltage characteristic of suspended MoS$_2$ 76
5.4.2 Electrostatic potential measurement using electron holography .. 77
5.5 Summary ... 80

6 Mean inner potential and thickness measurement of WSe$_2$ 83
6.1 Experiment and simulation details 84
6.1.1 Experimental conditions for off-axis electron holography 84
6.1.2 Simulation of electron wavefunctions 86
6.2 Voronoi tessellation of the WSe$_2$ lattice 89
6.3 Local specimen thickness measurement from electron wavefunctions of WSe$_2$ 92
6.4 Mean inner potential of WSe$_2$ 97
6.5 Mean free path of WSe$_2$ 99
6.6 Summary ... 100

7 Determination of experimental parameters from electron wavefunctions 103
7.1 Strategy for parameter determination 104
7.2 Determination of diffraction-related parameters 107
7.2.1 Uniqueness of the solution and influence of object thickness ... 111
7.2.2 Influence of parameter values 116
7.2.3 Influence of noise .. 119
7.2.4 Influence of errors in mean phase and mean amplitude 124
7.2.5 Summary ... 129
7.3 Determination of imaging-related parameters 129
7.3.1 Uniqueness of the solution 132
7.3.2 Influence of noise .. 134
7.3.3 Influence of higher order aberrations 141
7.3.4 Summary ... 144
7.4 Summary ... 144
Table of contents

8 Absolute scale quantitative off-axis electron holography of WSe$_2$ 147
 8.1 Experimental conditions and data preparation 148
 8.2 Determination of diffraction-related parameters 151
 8.3 Determination and elimination of coherent aberrations 155
 8.4 Towards the detection of structural defects 165
 8.5 Summary 171

9 Summary 173

Bibliography 175

List of own publications 189

Appendix A Definitions and theorems 191
 A.1 Fourier transform 191
 A.2 Convolution theorem 191
Absolute scale off-axis electron holography of thin dichalcogenide crystals at atomic resolution

Florian Winkler