Many-Body Methods for Real Materials

Autumn School organized by
the Institute for Advanced Simulation
at Forschungszentrum Jülich
16 – 20 September 2019
Contents

Preface

1. Introduction to Density Functional Theory
 Xavier Blase

2. The Random Phase Approximation and its Applications to Real Materials
 Xinguo Ren

3. Introduction to Variational and Projector Monte Carlo
 Cyrus Umrigar

4. Optimized Quantum Monte Carlo Wave Functions
 Arne Lüchow

5. Variational Wave Functions for Strongly Correlated Fermionic Systems
 Federico Becca

6. Auxiliary-Field Quantum Monte Carlo at Zero- and Finite-Temperature
 Shiwei Zhang

7. Exact Diagonalization and Lanczos Method
 Erik Koch

8. Quantum Chemistry DMRG in a Local Basis
 Miles Stoudenmire

9. Density Matrix Renormalization
 Karen Hallberg

10. Dynamical Mean-Field Theory and the Mott Transition
 Marcelo Rozenberg

11. Dynamical Mean-Field Theory for Materials
 Eva Pavarini

 Robert Eder

13. Introduction to Many-Body Green Functions In and Out Of Equilibrium
 James Freericks

 Andrea Donarini

15. Diagrammatic Monte Carlo
 Nikolay Prokof’ev

16. Stochastic Series Expansion Methods
 Anders Sandvik

17. Algebraic Methods in Many-Body Physics
 Gerardo Ortiz

Index