Configurable frequency synthesizer for large scale physics experiments

Nina Parkalian
Configurable frequency synthesizer for large scale physics experiments

Nina Parkalian
Contents

List of abbreviations xiii

List of Figures xvi

List of Tables xxi

1 Introduction 1
 1.1 Thesis objectives .. 2
 1.2 Thesis outline ... 3

2 Jiangmen Underground Neutrino Observatory 5
 2.1 Introduction .. 5
 2.2 Neutrino mass hierarchy ... 7
 2.3 JUNO electronics .. 8
 2.3.1 Read-out chip for JUNO 9
 2.4 Impact of clock noise on ADC operation 11
 2.4.1 Sampling clock specifications and requirements for the JUNO project 12
3 PLL-based frequency synthesizer design in 65 nm CMOS technology 15
 3.1 Basics about PLL-based frequency synthesizer 15
 3.1.1 PLL behavioral characteristic in Matlab 17
 3.2 Oscillator structures ... 20
 3.2.1 Phase noise analysis .. 22
 3.2.2 Proposed voltage-controlled oscillator 24
 3.3 Regulated amplitude for the VCO in the PLL 29
 3.3.1 The impact of degradation phenomenon on circuit performance 30
 3.3.2 Modeling the degradation phenomenon 31
 3.3.3 Digital control loop procedure to regulate the VCO amplitude 32
 3.3.4 Amplitude error detector design 34
 3.4 Phase frequency detector/charge pump 36
 3.4.1 Phase frequency detector architecture 36
 3.4.2 Charge pump design .. 37
 3.5 Frequency dividers .. 42
 3.5.1 Frequency divider by two ... 43
 3.5.2 Multi-modulus frequency divider 44
 3.5.3 The frequency division approach for the considered PLL 45
 3.6 Design implementation and measurement results 47

4 Digital phase-locked loop ... 55
 4.1 Motivation for the implementation of a digital PLL 55
4.2 Introduction to the digital PLL 56
4.3 Simulink and Matlab as modeling tools 57
4.4 Digital PLL architectures 57
 4.4.1 Accumulator-based digital PLL 58
4.5 Digitally-controlled oscillator 60
 4.5.1 Oscillation frequency of the ring oscillator 61
 4.5.2 Ring DCO based on parallel tri-state buffers 62
 4.5.3 Ring DCO based on current starving 64
 4.5.4 Proposed approach for the DCO 65
 4.5.5 Proposed DCO design in Simulink 68
4.6 Time-to-digital converter 70
 4.6.1 General considerations 70
 4.6.2 An overview of TDC architectures 71
 4.6.2.1 TDC with gate and sub-gate delay resolution 71
 4.6.3 Gated ring oscillator TDC as a case of oversampling and noise shaping TDCs 73
 4.6.4 Proposed design of the TDC 75
4.7 Digital loop filter .. 77
4.8 Digital PLL in frequency domain 78
 4.8.1 Digital PLL in z-domain 78
 4.8.2 Digital PLL in s-domain 80
 4.8.3 Digital PLL implementation and simulation results in Simulink 81
4.9 Noise analysis for the digital PLL 84
 4.9.1 DCO noise model ... 85
 4.9.2 TDC noise model ... 87
4.10 Optimum loop bandwidth for the digital PLL 88
4.11 Time-domain simulations for the digital PLL 89
 4.11.1 Frequency monitoring of the digital PLL in Simulink 90
4.12 Digital PLL with reduced area and power consumption 92

5 Summary and future work 95
 5.1 Summary ... 95
 5.2 Future work ... 97

Bibliography 98

About the author 111

List of publications 113
Configurable frequency synthesizer for large scale physics experiments
Nina Parkalian