The most abundant biological molecules on earth are carbohydrates. They cover the surface of all cellular organisms and are added to the structure of numerous molecules produced by these cells. Glycosides are essential for the given biological and physicochemical properties of a specific compound, and exert a major influence on cell recognition, health and immunity, the functionality and stability of peptides, and many other processes throughout biology.

Due to the large impact of glycosylation, the demand for simple methods for the synthesis of defined glycosides is constantly rising. The use of enzymes such as glycosyltransferases, glycosidases, and glycosynthases capable of transferring or hydrolysing glycosidic structures has gained much interest by organic chemists. This thesis focussed on the development of new glycosynthases with the aim of creating a versatile biocatalytic toolbox for glycosylation and glycodiversification in organic synthesis.

The objective was approached in four projects, each focussing on a different aspect of the glycosylation reaction carried out by glycosynthases. These encompassed the influence of temperature on the glycosylation reaction by applying mutated glycosidases with extremophilic properties; a substrate based approach to glycosynthase development in order to enable glycosylation of phenolic compounds; studies toward the development of an α-L-rhamnosynthase; and the transfer of large glycoside structures to small molecules by endo-\(N\)-acetylglucosaminidases.
Glycosynthases – tuning glycosidase activity towards glycoside diversification and synthesis

Marc Richard Hayes
TABLE OF CONTENTS

1 Abbreviations... I
2 Abstract ... 1
3 Kurzzusammenfassung ... 3
4 Introduction... 5
 4.1 Importance of glycosides... 5
 4.2 Thesis objective.. 7
5 State of knowledge .. 9
 5.1 Glycosynthases — from hydrolysis to synthesis .. 9
 5.2 Biocatalysis towards β-linked glycosides ... 12
 5.2.1 Synthesis of β-glycosides ... 12
 5.2.2 Glycosidase candidates — a versatile toolbox for β-glycoside synthesis .. 21
 5.3 Biocatalysis towards α-linked glycosides ... 27
 5.3.1 Synthesis with α-glycosynthases .. 27
 5.3.2 Biocatalysis towards rhamnosides .. 31
 5.4 Transferring glycans by endo-β-N-acetylglucosaminidases ... 34
 5.4.1 Glycosynthases derived from endo-β-N-acetylglucosaminidases ... 34
 5.4.2 Endo-CC — an ENGase with high potential .. 36
6 Results... 38
 6.1 From hot to cold — searching for optimal glycosynthase conditions by varying temperature optima ... 38
 6.1.1 Glucosidase gene isolation ... 38
 6.1.2 Characterisation of the wild type glycosidases .. 43
 6.1.3 Structural analysis and mutagenesis of the β-gluicosidases ... 49
 6.1.4 Detecting glycosynthase activity .. 57
 6.1.5 Development of a high-throughput assay for glycosynthase characterisation .. 66
 6.1.6 Glycosynthase kinetics and acceptor screening ... 71
 6.2 A substrate based approach for glycosynthase development ... 77
 6.2.1 Choice and isolation of β-glucosidase Cbg1 .. 77
 6.2.2 Characterisation of Cbg1 ... 80
 6.2.3 Mutagenesis and screening for synthetic activity ... 83
6.2.4 Expanding the mutant library of Cbg1 for synthetic application 88
6.2.5 Cbg1 for transglycosylation ... 97

6.3 Creating a rhamnosynthase .. 101
6.3.1 Synthesis of rhamnosyl substrates ... 101
6.3.2 Characterisation of the wt α-L-rhamnosidase ... 104
6.3.3 Mutagenesis of α-L-rhamnosidase RhaB ... 109
6.3.4 Screening for azide release .. 111
6.3.5 Attempts to find a α-L-rhamnosynthase .. 114

6.4 From monosaccharides to en bloc glycan transfer .. 125
6.4.1 En bloc glycosylation .. 125
6.4.2 Glycosylating RNase B-GlcNAc .. 126
6.4.3 Transferring glycans to low molecular weight acceptors 127
6.4.4 Heterologous expression of Endo-CC N180H... 130

7 Summary and Outlook .. 133

8 Experimental Section .. 144
8.1 General ... 144
8.1.1 Devices ... 144
8.1.2 Consumables ... 145
8.1.3 Chemicals and enzymes ... 146
8.1.4 Oligonucleotides and plasmids ... 146
8.1.5 Bacterial strains .. 151
8.1.6 Software ... 151
8.2 Molecular biological methods .. 152
8.2.1 Isolation of genomic DNA from *R. radiobacter* ... 152
8.2.2 Plasmid isolation .. 152
8.2.3 DNA concentration determination .. 153
8.2.4 Agarose gel electrophoresis .. 153
8.2.5 DNA gel elution ... 154
8.2.6 DNA ligation and restriction .. 154
8.2.7 DNA amplification by PCR .. 155
8.2.8 Mutagenesis by inverse-PCR ... 156
8.6.9 Fluorination of peracetylated glycosides .. 174
8.6.10 O-Glycosylation .. 176
8.6.11 One-pot peracetylation and bromination of α-L-rhamnose (11e) 178
8.6.12 Synthesis of 2,3,4-tri-O-acetyl β-L-rhamnopyranosyl azide (22v) 179
8.6.13 Deprotection of acetylated compounds .. 180
8.6.14 Synthesis of triisopropyl-(4-nitrophenoxy)-silane (TIPSpNP, 23) 183
8.6.15 Enzymatic synthesis of prunin (1b) from naringin (1c) 184
8.6.16 Biocatalytic synthesis of β-D-glucosides ... 185
8.6.17 Glycosylation of glycoside molecules by Endo-CC N180H 189

9 Appendix ... 192

9.1 Gene and protein sequences .. 192
9.1.1 Standard expression vectors .. 192
9.1.2 abg — β-Glucosidase of R. radiobacter .. 193
9.1.3 bglU — β-Glucosidase of M. antarcticus ... 195
9.1.4 bglC — β-Glycosidase of P. furiosus ... 196
9.1.5 cbg1 — β-Glucosidase of R. radiobacter .. 198
9.1.6 rhaB — α-L-Rhamnosidase of Bacillus sp. GL1 200
9.1.7 endo-CC N180H — Endo-N-acetylglucosaminidase variant of C. cinerea.... 202
9.2 Codon harmonisation of bglU .. 204
9.3 Content of own contribution to the published publications during the work of this thesis .. 206

10 References .. 207
11 List of Synthesised Molecules ... 219
12 Acknowledgements ... 222
13 Declaration... 225
The most abundant biological molecules on earth are carbohydrates. They cover the surface of all cellular organisms and are added to the structure of numerous molecules produced by these cells. Glycosides are essential for the given biological and physicochemical properties of a specific compound, and exert a major influence on cell recognition, health and immunity, the functionality and stability of peptides, and many other processes throughout biology.

Due to the large impact of glycosylation, the demand for simple methods for the synthesis of defined glycosides is constantly rising. The use of enzymes such as glycosyltransferases, glycosidases, and glycosynthases capable of transferring or hydrolysing glycosidic structures has gained much interest by organic chemists. This thesis focused on the development of new glycosynthases with the aim of creating a versatile biocatalytic toolbox for glycosylation and glycodiversification in organic synthesis.

The objective was approached in four projects, each focusing on a different aspect of the glycosylation reaction carried out by glycosynthases. These encompassed the influence of temperature on the glycosylation reaction by applying mutated glycosidases with extremophilic properties; a substrate based approach to glycosynthase development in order to enable glycosylation of phenolic compounds; studies toward the development of an α-L-rhamnosynthase; and the transfer of large glycoside structures to small molecules by endo-N-acetylglucosaminidases.