Creating and characterizing a single molecule device for quantitative surface science

Matthew Felix Blishen Green
Creating and characterizing a single molecule device for quantitative surface science

Matthew Felix Blishen Green
Contents

Introduction

1. Theoretical background and experimental techniques
 1.1. Introduction to scanning tunnelling microscopy 6
 1.2. Introduction to atomic force microscopy 10
 1.3. Experimental details 13
 1.3.1. Experimental setup 13
 1.3.2. Sample and tip preparation 17

2. Patterning a hydrogen-bonded molecular monolayer with a hand-controlled SPM
 Introduction 20
 2.1. Patterning a hydrogen-bonded molecular monolayer with a hand-controlled SPM 22

3. Scanning Quantum Dot Microscopy
 Introduction 32
 3.1. Scanning Quantum Dot Microscopy 33
 3.2. Scanning Quantum Dot Microscopy: Supplemental Information 39
 3.3. A quantitative method to measure local electrostatic potential near surfaces 47

4. Quantitative modelling of single electron charging events
 Introduction 56
 4.1. Single electron box model 57
 4.1.1. Experimental data 59
 4.1.2. Free energy of the system 64
Contents

4.1.3. Charging events of the QD .. 66
4.1.4. Charging force .. 73
4.1.5. Applying the theory to experimental data 76
4.2. Point charge model ... 81
4.2.1. Predictions of the point charge model 81
4.2.2. Discrepancy in α ... 86
4.2.3. Energy level position and Coulomb repulsion 92
4.3. Discussion .. 95
Conclusion and outlook .. 100
4.A. Appendix .. 102
4.A.1. Interplay of frequency shift and tunnelling current 102
4.A.2. Determining the electronic coupling between tip and QD 104

5. Accurate work function changes measured with scanning quantum dot microscopy ... 109
Introduction .. 110
5.1. Point charge model to obtain change in work function 112
5.1.1. An expression for local potential 112
5.1.2. Removing the influence of the tip’s properties 115
5.2. Change in work function of Ag(111) after PTCDA adsorption 117
5.2.1. Constant height KPFM results 117
5.2.2. SQDM results .. 119
5.2.3. Discussion .. 120
Conclusion and outlook .. 126

Summary ... 129

Bibliography ... 133

List of Figures ... 141

viii
Creating and characterizing a single molecule device for quantitative surface science

Matthew Felix Blishen Green