Yttriumoxid-Dünnschichten als Tritium-Permeationsbarriere

Jan Engels
Yttriumoxid-Dünnschichten als Tritium-Permeationsbarriere

Jan Engels
Inhaltsverzeichnis

1 Einleitung 5

2 Fusion 7

2.1 Funktionsweise eines Fusions-Kraftwerks 7
2.2 Tritium und Tritium-Kreislauf 8
2.3 Reaktorgefäß und erste Wand 8
2.4 Tritium-Permeationsbarriere 9

3 Bisherige Forschung und Ziele dieser Arbeit 11

3.1 Permeationsexperimente 11
3.2 Permeationsreduktionsfaktor 12
3.3 Materialien für Permeationsbarrieren 16
3.4 Wasserstoff-Permeation durch Yttriumoxid 18
3.5 Magnetron-Deponierung des Yttriumoxids 21
3.6 Yttriumoxid-Kristallwachstum im Magnetron 21
3.7 Bindung an das Strukturelement und an das PFM 24
3.8 Eurofer und Wasserstoff-Permeation 25
3.9 Ziele dieser Arbeit 26

4 Grundlagen 31

4.1 Permeation und limitiertes Regime 31
4.2 Kubische und monokline Phase der Sesquioxide wie Y$_2$O$_3$ 41
4.3 Gitterdefekte und Schäden durch Neutronenbestrahlung 44
4.4 Wasserstoff-Permeation und Aufladungseffekte von Y$_2$O$_3$ 45
4.5 Der RAFM-Stahl Eurofer 46
4.6 Palladium-Decksschicht 49
5 Probenpräparation 51
 5.1 Präparation 51
 5.2 Magnetron-Anlage und Dünnschichten 52
 5.3 Proben für die Charakterisierung 58

6 Methoden 61
 6.1 Charakterisierung 61
 6.2 Permeationsmessungen 89

7 Ergebnisse 107
 7.1 Eurofer-Substrat 107
 7.2 Keramisches Y$_2$O$_3$ 126
 7.3 Kalt metallisches Y$_2$O$_3$ 154
 7.4 Y$_2$O$_3$-Schichtsystem 158
 7.5 Heiß metallisches Y$_2$O$_3$ 170

8 Zusammenfassende Diskussion 197
 8.1 Struktur der Proben 197
 8.2 Permeation 213

9 Zusammenfassung 233

10 Anhang 237
Yttriumoxid-Dünnschichten als Tritium-Permeationsbarriere
Jan Engels