Analysis & modeling of metastable photovoltaic technologies: towards dynamic photovoltaic performance models

Marzella Amata Görig
Analysis & modeling of metastable photovoltaic technologies: towards dynamic photovoltaic performance models

Marzella Amata Görig
Contents

Abstract

Zusammenfassung

1 Introduction

2 Fundamentals

2.1 Basic physics of solar cells
2.1.1 Electronic states
2.1.2 Working principle of solar cells

2.2 Photovoltaic performance models
2.2.1 Device simulators for thin film photovoltaics
2.2.2 Equivalent circuit models
2.2.3 Empirical models
2.2.4 General structure of PV performance models

2.3 Modeling of degradation and metastable effects

3 Outdoor data and analysis method

3.1 Outdoor data set
3.2 Karmalkar-Haneefa model
3.3 Loss Factor Model

4 Outdoor data analysis with the Karmalkar-Haneefa model

4.1 Parameterization
4.1.1 Results of the linear fits for CdTe
4.1.2 Comparison of the KH and linear fits for CdTe
4.1.3 Comparison of the KH and linear fits for all technologies

Abstract

Zusammenfassung

1 Introduction

2 Fundamentals

2.1 Basic physics of solar cells
2.1.1 Electronic states
2.1.2 Working principle of solar cells

2.2 Photovoltaic performance models
2.2.1 Device simulators for thin film photovoltaics
2.2.2 Equivalent circuit models
2.2.3 Empirical models
2.2.4 General structure of PV performance models

2.3 Modeling of degradation and metastable effects

3 Outdoor data and analysis method

3.1 Outdoor data set
3.2 Karmalkar-Haneefa model
3.3 Loss Factor Model

4 Outdoor data analysis with the Karmalkar-Haneefa model

4.1 Parameterization
4.1.1 Results of the linear fits for CdTe
4.1.2 Comparison of the KH and linear fits for CdTe
4.1.3 Comparison of the KH and linear fits for all technologies
Contents

4.2 Maximum power point fitting 74
 4.2.1 Analysis of the entire JV curve fitting 76
 4.2.2 Comparison of the KH fit with the one-diode model ... 81
 4.2.3 Analysis of the fit at the MPP 83
4.3 Parameter analysis 85
 4.3.1 Parameter analysis for the KH model 86
 4.3.2 Parameter analysis for the LFM 93
 4.3.3 Comparison of the KH model and LFM 95
4.4 Yield prediction 98
 4.4.1 Methods 99
 4.4.2 Analysis and results 101
4.5 Conclusion .. 106

5 Degradation Analysis and Modeling of CdTe Outdoor Data 109
 5.1 Introduction degradation and annealing effects 109
 5.2 Coefficient analysis 111
 5.2.1 Open circuit voltage 115
 5.2.2 Differential conductance at short circuit condition ... 116
 5.2.3 Differential resistance at open circuit condition 118
 5.2.4 Analysis of the fill factor 119
 5.2.5 Ideality factor 121
 5.3 Analysis and modeling of different modules 124
 5.3.1 Analysis of different CdTe modules in Tempe 125
 5.3.2 Analysis of CdTe in different climate zones 127
 5.3.3 Results for the maximum power density and fill factor 131
 5.3.4 An empirical dynamic performance model 138
 5.4 Conclusion .. 139

6 A new model for degradation and annealing of a-Si:H solar cells 143
 6.1 Annealing and degradation effects 143
 6.2 Light soaking experiment 147
 6.2.1 Execution of the experiment 149
 6.2.2 Experimental results 151
 6.3 Simulation model 155
Contents

6.3.1 Opto-electronic device simulator .. 157
6.3.2 Degradation model ... 157
6.3.3 Simulation results .. 161
6.3.4 Limitations of the simulation model 164
6.4 Conclusion .. 170

7 Conclusion .. 173

References ... 178

Appendices .. 191

A Appendix for Chapter 3 .. 193

B Appendix for Chapter 4 ... 197

C Appendix for Chapter 5 ... 205
C.1 General results .. 206
C.2 Parameter and coefficient changes for all 12 CdTe modules 213
 C.2.1 Open circuit voltage ... 214
 C.2.2 Differential conductance at short circuit condition 217
 C.2.3 Differential resistance at open circuit condition 223
 C.2.4 Fill Factor ... 226
 C.2.5 Maximum Power Density .. 229
 C.2.6 Tables with summarized analysis results 230

D List of Abbreviations and Symbols ... 235

E List of publications ... 241

F Curriculum Vitae ... 243

Acknowledgments .. 245
Analysis & modeling of metastable photovoltaic technologies: towards dynamic photovoltaic performance models

Marzella Amata Görig