Operando X-ray photoemission electron microscopy (XPEEM) investigations of resistive switching metal-insulator-metal devices

Christoph Jan Schmitz
Operando X-ray photoemission electron microscopy (XPEEM) investigations of resistive switching metal-insulator-metal devices

Christoph Jan Schmitz
Contents

Executive Summary 1

I Part I - Theoretical Background

1 Introduction & Motivation 9

2 Resistive Switching Phenomena 13
 2.1 History and state-of-the-art 13
 2.1.1 Characteristic I-V dependence in resistive switching materials 14
 2.1.2 Geometric location and microscopic shape of conducting channels 14
 2.1.3 Resistance modulation and the role of interfaces for filamentary switching 16
 2.1.4 Dynamics of the switching process 17
 2.2 Resistive switching oxides 18
 2.2.1 Valence change model (VCM) 18
 2.2.2 Electronic transport across metal/insulator interfaces 21
 2.2.3 Unified compact model for VCM devices 24

3 The model oxide system SrTiO$_3$ 26
 3.1 Crystal structure 26
 3.2 Electronic properties of SrTiO$_3$ 26
 3.3 Structural and electronic correlations: Crystal field splitting in SrTiO$_3$ 28
 3.4 Simulations of the Ti L-edge absorption 30

4 Photoelectron emission spectroscopy & microscopy 32
 4.1 Three-step model of photoemission 33
 4.2 Quantum mechanical description of the excitation process 34
 4.2.1 Photoionization cross sections $\sigma_{n,l}$ 35
 4.2.2 Dipole selection rules 36
 4.3 Probing depth & Surface sensitivity 37
 4.4 Electron Spectroscopy for Chemical Analysis (ESCA) 39
 4.4.1 X-ray photoemission spectroscopy (XPS) 39
 4.4.2 X-ray absorption spectroscopy (XAS) 41
 4.5 Photoemission electron microscopy (PEEM) 42
 4.6 Photoemission spectromicroscopy using synchrotron light 46
II Part II - Experimental Results

5 Chemical and spatial fingerprints of resistive switching in SrTiO₃

5.1 Fingerprints of oxygen vacancies V'O and Ti³⁺ in literature .. 52
5.2 Chemical fingerprints of reduced STO single crystals ... 53
5.3 Chemical fingerprints in delaminated STO MIM devices ... 55
 5.3.1 Ti L₂,3-edge XAS-PEEM .. 56
 5.3.2 O K-edge XAS-PEEM .. 58
 5.3.3 Work function contrast ... 59
 5.3.4 Ti 2p XPS and VB spectroscopy ... 60
5.4 Spatial fingerprints and filament substructure .. 61

6 Novel approaches and device concepts for in-situ and operando resistive
switching

6.1 The top electrode surface sensitivity dilemma .. 66
6.2 Approach 1: Hard X-ray photoemission electron microscopy (HAXPEEM) 69
 6.2.1 Evaluation of HAXPEEM probing depth .. 70
 6.2.2 Interface-Sensitivity and HAXPEEM performance ... 71
 6.2.3 Expected and measured signal intensities ... 73
 6.2.4 Viability of the HAXPEEM approach for time-resolved studies 75
6.3 Approach 2: Planar Devices ... 78
6.4 Approach 3: Ultra-thin, electron transparent top electrodes 79
 6.4.1 XAS attenuation length for Rh electrodes .. 80
 6.4.2 Electron transparency of fabricated, thin-film devices 81
6.5 Summary and Outlook ... 83

7 In-situ characterization of G/STO thin film devices .. 86

7.1 Spectromicroscopical quantification of resistive switching filaments 87
7.2 Experiment-assisted device simulations ... 89
7.3 Absence of chemical fingerprints in in-situ switched devices 91

8 Operando characterization of G/STO thin film devices .. 92

8.1 Experimental idea ... 93
8.2 Technical implementation ... 94
 8.2.1 Experimental Setup ... 94
 8.2.2 Sample holder design for operando experiments ... 94
 8.2.3 High voltage surge protection (HVSP) .. 98
 8.2.4 Implementation of temporal resolution in operando XPEEM 99
8.3 Data Analysis: XPEEM based recalculation of local potentials 100
 8.3.1 Recalculation of the local potential V(x,y) .. 100
 8.3.2 Recalculation of the local time-dependent potential V(x,y,t) 101
 8.3.3 Recalculation of local potentials from intensity modulations 102
 8.3.4 Intermixing of chemical and electrostatic information in the recalculation 105
 8.3.5 Limitations of the recalculation algorithm .. 106
8.4 Experimental results ... 107
 8.4.1 Real-time pulse characterization of G/STO devices in voltage mode 107
Operando X-ray photoemission electron microscopy (XPEEM) investigations of resistive switching metal-insulator-metal devices

Christoph Jan Schmitz