Investigation of ternary nitride semiconductor alloys by scanning tunneling microscopy

Verena Portz
Investigation of ternary nitride semiconductor alloys by scanning tunneling microscopy

Verena Portz
Contents

1 Introduction 7

2 Theoretical background 11
 2.1 Scanning tunneling microscopy 11
 2.1.1 One dimensional tunneling effect 11
 2.1.2 Tunnel current .. 14
 2.1.3 WKB approximation of the tunnel current 17
 2.2 Simulation of the tunnel current 19
 2.2.1 Derivation of the tip induced band bending 19
 2.2.2 Derivation of the tunnel current 22
 2.2.3 Components of the tunnel current 24
 2.3 Transmission electron microscopy 28
 2.3.1 Selected Area Electron Diffraction Mode 29
 2.3.2 Algorithm for the identification of peak positions in SAED images ... 33
 2.4 Scanning near-field optical microscopy 34
 2.5 Stress and strain ... 36
 2.6 Polarization ... 39
 2.7 Concepts of roughness analysis 40
 2.7.1 Power-Spectral Density 40
 2.7.2 Auto-Covariance and Auto-Correlation Function 42
 2.7.3 Cross-Covariance and Cross-Correlation Function 43

3 Experimental details 45
 3.1 Cross-sectional scanning tunneling microscopy 45
 3.1.1 Sample preparation and cleavage 45
3.1.2 Tip preparation ... 46
3.2 Cross-sectional atom force microscopy and scanning near-field optical
microscopy ... 47
3.3 Cross-sectional scanning transmission electron microscopy 48
3.4 Sample specifications ... 48
 3.4.1 A2314 ... 48
 3.4.2 A2688 ... 49
 3.4.3 A3162 ... 49

4 Electronic properties of the $\text{Al}_{1-x}\text{In}_x\text{N}(10\bar{1}0)$ surface 51
 4.1 Experimental results .. 51
 4.2 DFT calculations of the $\text{Al}_{1-x}\text{In}_x\text{N}(10\bar{1}0)$ surface 54
 4.3 Analysis of tunnel spectra obtained on the $\text{Al}_{1-x}\text{In}_x\text{N}(10\bar{1}0)$ surface 56
 4.4 Conclusion ... 58

5 About the electron affinity 59
 5.1 Definition of the electron affinity 60
 5.2 Electron affinity of GaN ... 61
 5.3 Electron affinity of AlN ... 63
 5.4 Electron affinity of InN ... 63
 5.5 Discussion ... 65
 5.6 Influence of the electron affinity on the tunnel current 66
 5.7 Estimation of the electron affinity of $\text{Al}_{0.81}\text{In}_{0.19}\text{N}$ using STS 69
 5.8 Conclusion ... 70

6 Strain and compositional fluctuations in $\text{Al}_{0.81}\text{In}_{0.19}\text{N}/\text{GaN}$ heterostruc-
tures ... 71
 6.1 Investigation of $\text{Al}_{0.81}\text{In}_{0.19}\text{N}$ layers by STM 72
 6.1.1 Cleavage surfaces of GaN/Al$_{0.81}$In$_{0.19}$N heterostructures 72
 6.1.2 Height profiles of GaN/Al$_{0.81}$In$_{0.19}$N heterostructures 72
 6.1.3 Roughness analysis ... 75
 6.2 Investigation of Al$_{0.81}$In$_{0.19}$N by STEM and SAED 80
 6.3 Discussion ... 84
 6.3.1 Stress relaxation at the surface 84
 6.3.2 Strain induced piezoelectric polarization 89
6.3.3 Changes of the tunnel current due to compositional fluctuations
6.3.4 Dislocations
6.4 Conclusion

7 Defects in Al\textsubscript{1-x}In\textsubscript{x}N
7.1 Experimental results
7.2 Discussion
7.3 Conclusion

8 Contrast between GaN- and Al\textsubscript{x-1}In\textsubscript{x}N-layers
8.1 Experimental results
8.2 Discussion
8.3 Conclusion

9 Summary

Material parameters

Bibliography

List of own publications
Investigation of ternary nitride semiconductor alloys by scanning tunneling microscopy

Verena Portz