Light Management Tandem Solar Cells
André Hoffmann
Member of the Helmholtz Association

Light Management by Intermediate Reflectors in Silicon-based Tandem Solar Cells
André Hoffmann
Light Management by Intermediate Reflectors in Silicon-based Tandem Solar Cells

André Hoffmann
Contents

1 Abstract 3

2 Zusammenfassung 9

3 Introduction 13

4 Fundamentals 19
 4.1 Electrodynamics and Optics 19
 4.1.1 Classical Electrodynamics 19
 4.1.2 Absorption in Semiconducting Materials 22
 4.1.3 Nano-Optics and Photonics 23
 4.1.4 Computational Electrodynamics 27
 4.1.5 Fourier Analysis 31
 4.2 Thin-film Silicon Tandem Solar Cells 34
 4.2.1 Photovoltaic devices 34
 4.2.2 Solar Spectrum 35
 4.2.3 Device Structure of Thin-Film Silicon Solar Cells 35
 4.2.4 Light Trapping in Solar Cells 37
 4.2.5 Multi-junction Solar Cells 41
 4.3 Experimental Methods 46
 4.3.1 Solar Cell Fabrication 46
 4.3.2 Device Characterization 49

5 Intermediate Reflectors in Tandem Solar Cells - Identification of Loss Mechanisms 53
 5.1 Motivation 53
 5.2 Parasitic Losses in Tandem Solar Cells 54
 5.3 Annealing Experiment 55
 5.4 Rigorous Optical Simulation 58
 5.4.1 Influence of Refractive Index 60

6 Spectrally Selective Intermediate Reflectors 63
Contents

6.1 Design Criteria ... 63
6.2 Design of Multilayer Filters 65
6.3 Experimental Realization 70
 6.3.1 Integration into flat solar cells 71
6.4 Influence of the Roughness on Multilayer Intermediate Reflector 73
6.5 Fabrication of Thin-Film Silicon Prototype on Textured Substrates 74
6.6 Additional Improvements 77
 6.6.1 Variation of the Materials 77
 6.6.2 Influence of the Quantity of Layers 78
6.7 Comparison to Other Spectrally Selective Intermediate Reflectors 79
 6.7.1 3D Photonic Crystal IR 79
 6.7.2 Plasmonic IR ... 81
 6.7.3 Discussion .. 83
6.8 Summary ... 84

7 Investigation of Light Trapping by Coupling into Guided Modes in the a-Si:H Top Cell 85
 7.1 Waveguide Modes in Thin-Films on 2D Grating Structures 85
 7.1.1 Evaluation of different grating geometries 86
 7.1.2 Variation of teh back/ intermediate reflector 87
 7.2 Waveguide Modes in Randomly Textured a-Si:H Films 91
 7.3 Local Effects of Surface Features in a-Si:H Films 94

8 Interplay of Intermediate Reflector and Surface Texture 99
 8.1 Multilayer IR on Various Substrates 99
 8.2 Substrate Variation .. 101
 8.2.1 From Experiment to Simulation 101
 8.2.2 Variation of Surface Parameters 104
 8.2.3 Conclusion .. 107
 8.3 Angular Reflection Modes 109
 8.3.1 Reflection of Thin Layers 109
 8.3.2 Summary .. 113
 8.4 Theory applied to Randomly Textured Tandem Solar Cells 113
 8.4.1 Spatial Dependence 113
 8.4.2 Intermediate Reflector Thickness Dependence 118
 8.5 Theory applied to Tandem Solar Cells on Periodic Grating Textures 122
Light Management by Intermediate Reflectors in Silicon-based Tandem Solar Cells

André Hoffmann