Reaction-diffusion modelling of hydrogen retention and release mechanisms in beryllium

Mirko Wensing
 Reaction-diffusion modelling of hydrogen retention and release mechanisms in beryllium

Mirko Wensing
Contents

1. **Introduction**
 1.1. Thermonuclear fusion
 1.2. Thermal desorption spectroscopy
 1.3. Experimental observations:
 1.3.1. Low fluence regime
 1.3.2. Retention near critical fluence
 1.3.3. Very high fluence-regime
 1.4. Rate equation modelling
 1.5. Aim of this thesis

2. **Hydrogen diffusion in beryllium**
 2.1. Diffusion in solids
 2.2. Beryllium: Atomistic properties
 2.3. Atomistic description of diffusion
 2.4. Monte Carlo model
 2.5. Diffusion with temperature ramp
 2.5.1. Analytical solution
 2.5.2. Comparison to numerical solutions
 2.6. Conclusion

3. **Binding mechanisms of H in defects**
 3.1. Environment of vacancies
 3.2. Vacancy-hydrogen complex
 3.3. From first-principles to rate-equation modelling
 3.3.1. Detrapping: \(\text{VH} \rightarrow \text{H} + \text{V} \)
 3.3.2. Trapping: \(\text{H} + \text{V} \rightarrow \text{VH} \)
 3.4. Simple CRDS
 3.5. Mobile defects
 3.6. Ambiguities in earlier CRDS calculations
 3.7. Multiple trapping
 3.8. Comparison to experimental data for low fluences
 3.9. Conclusion

4. **Surface effects**
 4.1. Desorption from Be(0001)-surface
 4.2. Analytic treatment of second order desorption processes
Reaction-diffusion modelling of hydrogen retention and release mechanisms in beryllium

Mirko Wensing