STM-based quantum transport through molecular wires

Norman Fournier
STM-based quantum transport through molecular wires

Norman Fournier
Contents

1 **Introduction**

2 **Experimental methods**
 2.1 Introduction
 2.2 Scanning tunneling microscopy
 2.2.1 The tunneling effect
 2.2.2 Bardeen’s theory
 2.2.3 Tersoff-Hamann theory
 2.2.4 The scanning tunneling microscope
 2.2.5 Preparation of the tip
 2.2.6 Imaging and manipulation of single molecules with STM
 2.3 Scanning tunneling spectroscopy
 2.3.1 Working principle of the STS
 2.3.2 Spectroscopy at bare metal surfaces
 2.3.3 Electron-vibration coupling in STS
 2.3.4 The lock-in amplifier
 2.3.5 Calibration of the lock-in amplifier
 2.4 Noncontact atomic force microscopy
 2.4.1 Working principle of the AFM
 2.4.2 Controlling the junction with the AFM
 2.5 Sample preparation
 2.5.1 Preparation of the crystals
 2.5.2 Deposition of the molecules
 2.5.3 The molecular islands

3 **Theory of transport**
 3.1 Introduction
 3.2 Ballistic transport
 3.2.1 Landauer formula
 3.2.2 Transmission probability
 3.3 Molecule in a vacuum junction
 3.3.1 Coherent resonant tunneling in a double-barrier
 3.3.2 Incoherent tunneling
 3.3.2.1 Resonant current

vii
3.3.2.2 Off-resonant current ... 48
3.4 Molecular vibrations .. 53
3.5 The Kondo effect .. 54
3.6 Conclusions .. 56

4 Electronic structure of π-conjugated molecules 57
 4.1 Introduction .. 57
 4.2 Electronic structure of the seven systems 59
 4.2.1 Electronic structure of the Ag(111) systems 59
 4.2.2 Electronic structure of the Au(111) systems 62
 4.3 Investigation of NTCDA on Ag(111) 67
 4.4 Geometric and electronic structure of NTCDA on Ag(111) 69
 4.4.1 The commensurate phase 69
 4.4.2 The incommensurate phase 73
 4.4.3 The compressed phase 75
 4.5 Mapping the electronic structure within a molecule 76
 4.5.1 Electronic structure within a type A molecule 77
 4.5.2 Electronic structure within a type B molecule 86
 4.6 Temperature dependence of the Kondo resonance 88
 4.6.1 Temperature dependence of the peak height 89
 4.6.2 Temperature dependence of the peak width 89
 4.7 Differential conductance map of NTCDA on Ag(111) 93
 4.8 Conclusions .. 100

5 Highly reproducible lifting of π-conjugated molecules 103
 5.1 Force-controlled lifting of molecular wires 105
 5.2 Measurement of the Binding Energies of the Organic-Metal Perylene-Teracarboxylic-Dianhydride/Au(111) Bonds by Molecular Manipulation Using an Atomic Force Microscope 111

6 Systematic study of transport through a homologous series of π-conjugated molecules ... 117
 6.1 Introduction .. 117
 6.2 Transport measurements on single molecules 118
 6.2.1 Measurement routine 118
 6.2.2 Highly reproducible measurement 119
 6.3 Processing the data .. 123
 6.3.1 Sorting the data by classes 123
 6.3.2 Aligning the individual curves within class B 130
 6.3.3 Finding a curve which represents an individual system best 135
 6.3.3.1 Class A: Determine a generic curve 135
STM-based quantum transport through molecular wires

Norman Fournier