Extending the precision and efficiency of the all-electron full-potential linearized augmented plane-wave density-functional theory method

Gregor Michalicek
Extending the precision and efficiency of the all-electron full-potential linearized augmented plane-wave density-functional theory method

Gregor Michalicek
1. Introduction 11

2. Density functional theory 17
 2.1. Theoretical foundations 18
 2.1.1. The Born-Oppenheimer approximation 18
 2.1.2. The Hohenberg-Kohn theorem 19
 2.1.3. The Kohn-Sham system 21
 2.1.4. Spin-polarized DFT 23
 2.1.5. The exchange-correlation functional 24
 2.2. Aspects of electronic structure methods 28
 2.2.1. From non-relativistic to fully relativistic calculations 29
 2.2.2. Pseudopotential or all-electron 30
 2.2.3. Spherical approximation or full-potential 33
 2.2.4. Representing the wave functions 34

3. The all-electron full-potential linearized augmented plane-wave method 41
 3.1. The linearized augmented plane-wave basis 42
 3.1.1. Treatment of the core electrons 45
 3.1.2. Extending the LAPW basis with local orbitals 47
 3.1.3. Determination of the energy parameters 48
 3.1.4. The LAPW basis for thin films 50
 3.1.5. Other extensions and modifications of the LAPW basis 51
 3.2. Hamilton and Overlap matrices 53
 3.2.1. Hermiticity of the Hamilton matrix 54
 3.2.2. The setup for the interstitial region 55
 3.2.3. The setup for the muffin-tin spheres 57
 3.2.4. The setup for the vacuum regions 63
 3.3. Constructing the electron density 64
 3.3.1. Representation of the eigenfunctions 66
 3.3.2. Occupying the eigenstates 66
 3.3.3. The interstitial density 67
 3.3.4. The density in the MT spheres 68
 3.3.5. The density in the vacuum regions 69
3.3.6. Contributions to the density from the core electrons 70
3.4. Calculating the total energy 72
3.5. Developments for the FLAPW method 73

4. Analysis of the linearized augmented plane-wave basis 75
4.1. The linearization error 76
4.1.1. LO extensions and energy dependence of radial solutions 77
4.1.2. Investigated materials and calculation parametrization 79
4.1.3. The linearization error as a representation error 82
4.1.4. The linearization error and physical properties 88
4.1.5. The linearization error and the Kohn-Sham band gap 94
4.1.6. Basis set size convergence for the different basis sets 96
4.1.7. Concluding remarks on the linearization error 98
4.2. General properties of the basis functions and the wave functions 99
4.2.1. MT matching conditions 101
4.2.2. Changes of the MT potential and the basis functions throughout the self-consistency loop 109
4.2.3. Changes of the wave functions in the interstitial region throughout the self-consistency loop 120

5. The linearized augmented lattice-adapted plane-wave basis 123
5.1. Analytic form of the basis functions and first implementation aspects 124
5.2. Interstitial contributions to the overlap and Hamilton matrices 126
5.3. Muffin-tin contributions to the overlap and Hamilton matrices 128
5.4. Vacuum contributions to the overlap and Hamilton matrices 130
5.5. Representation of the eigenfunctions and construction of the valence density 132

6. A basis from early eigenfunctions 135
6.1. Accuracy of the BEE-F(LA)²PW approach 137
6.1.1. Metallic test system: fcc and hcp Cu 139
6.1.2. Covalent test system: Zinc blende SiC 142
6.1.3. Ionic test system: Rock-salt NaCl 144
6.1.4. Magnetic test system: Magnetically ordered compound FeRh in CsCl structure 147
6.1.5. Thin film test system: 5 layers of strained CoPt$_3$ 151
6.2. F(LA)²PW runtime performance 154
6.3. Reducing the angular momentum cutoff for the matrix setup 161
6.4. Concluding remarks 167

7. Conclusions and outlook 169

A. Atomic orbital (LA)²PW basis sets 173
A.1. Construction 174
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.2. Precision</td>
</tr>
<tr>
<td>A.3. Concluding remarks</td>
</tr>
<tr>
<td>List of abbreviations</td>
</tr>
<tr>
<td>Bibliography</td>
</tr>
</tbody>
</table>
Extending the precision and efficiency of the all-electron full-potential linearized augmented plane-wave density-functional theory method

Gregor Michalicek
Member of the Helmholtz Association