Growth and characterization of crystalline rare-earth based thin oxide films for the application as gate dielectric in nanotechnology

Anna Barbara Schäfer
Growth and characterization of crystalline rare-earth based thin oxide films for the application as gate dielectric in nanotechnology

Anna Barbara Schäfer
Contents

Abstract i

Kurzfassung iii

1 Introduction 1

2 Theoretical background 5
 2.1 Crystallography 5
 2.1.1 Epitaxy 6
 2.2 Gate dielectric requirements 7
 2.3 Band gap 8
 2.4 Relative permittivity κ 9
 2.4.1 Clausius-Mossotti equation 10
 2.5 Band gap against dielectric constant 11
 2.6 Capacitance equivalent thickness 12
 2.7 MOS capacitor 12
 2.7.1 Traps 16
 2.7.2 Conductance method 17
 2.8 Charge carrier transport in insulators 18
 2.8.1 Dielectric breakdown 20

3 Experimental 23
 3.1 Sample preparation 23
 3.1.1 Surface cleaning and preparation 24
 3.1.2 CVD techniques 26
 3.1.3 PVD techniques 32
 3.1.4 Reactive ion etching 33
 3.1.5 Rapid thermal annealing 34
 3.2 Characterization methods 34
 3.2.1 Structural characterization 34
 3.2.2 Dielectric characterization 43
 3.2.3 Characterization of GaN influenced by hexagonal LaLuO$_3$ top layer 44

4 Doped HfO$_2$, a "higher κ oxide" for Si technology 47
 4.1 Parameters influencing HfO$_2$ phase 47
 4.2 Aluminum doped HfO$_2$ 52
 4.3 Lutetium doped HfO$_2$ 59
Growth and characterization of crystalline rare-earth based thin oxide films for the application as gate dielectric in nanotechnology

Anna Barbara Schäfer