The increasing importance and magnitude of large-scale events in our society calls for continuous research in the field of pedestrian dynamics. This dissertation investigates the dynamics of pedestrian motion at high densities using computer simulations of stochastic models.

The first part discusses the successful application of the Floor Field Cellular Automaton (FFCA) in an evacuation assistant that performs faster than real-time evacuation simulations of up to 50,000 persons leaving a multi-purpose arena. A new interpretation of the matrix of preference improves the realism of the FFCA simulation in U-turns, for instance at the entrance to the stands.

The focus of the second part is the experimentally observed feature of phase separation in pedestrian dynamics into a slow-moving and a completely jammed phase. This kind of phase separation is fundamentally different to known instances of phase separation in e.g. vehicular traffic. Different approaches to modeling the phase separation are discussed and an investigation of both established and new models of pedestrian dynamics illustrates the difficulties of finding a model able to reproduce the phenomenon. The Stochastic Headway Dependent Velocity Model is introduced and extensively analyzed, simulations of the model evolve into a phase-separated state in accordance with the experimental data. Key components of the model are its slow-to-start rule, minimum velocity, and large interaction range.

This publication was edited at the Jülich Supercomputing Centre (JSC) which is an integral part of the Institute for Advanced Simulation (IAS). The IAS combines the Jülich simulation sciences and the supercomputer facility in one organizational unit. It includes those parts of the scientific institutes at Forschungszentrum Jülich which use simulation on supercomputers as their main research methodology.
Computer simulation of pedestrian dynamics at high densities

Christian Eilhardt
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>KURZZUSAMMENFASSUNG</td>
<td>v</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 General concepts of pedestrian dynamics</td>
<td>2</td>
</tr>
<tr>
<td>1.1.1 Collective phenomena</td>
<td>2</td>
</tr>
<tr>
<td>1.1.2 Basic quantities in pedestrian dynamics</td>
<td>4</td>
</tr>
<tr>
<td>1.1.3 Density concepts</td>
<td>5</td>
</tr>
<tr>
<td>1.1.3.1 Global density</td>
<td>5</td>
</tr>
<tr>
<td>1.1.3.2 Θ-density</td>
<td>5</td>
</tr>
<tr>
<td>1.1.3.3 Voronoi density</td>
<td>6</td>
</tr>
<tr>
<td>1.1.4 Fundamental diagram</td>
<td>7</td>
</tr>
<tr>
<td>1.1.5 Trajectories</td>
<td>8</td>
</tr>
<tr>
<td>1.2 Experimental situation</td>
<td>9</td>
</tr>
<tr>
<td>1.2.1 Experiment ‘Bergische Kaserne’</td>
<td>9</td>
</tr>
<tr>
<td>1.2.2 BaSiGo experiments</td>
<td>13</td>
</tr>
<tr>
<td>1.3 Modeling of pedestrian dynamics</td>
<td>13</td>
</tr>
<tr>
<td>1.3.1 Classification of modeling approaches</td>
<td>13</td>
</tr>
<tr>
<td>1.3.2 Initial conditions</td>
<td>15</td>
</tr>
<tr>
<td>1.3.2.1 Homogeneous initial condition</td>
<td>16</td>
</tr>
<tr>
<td>1.3.2.2 Inhomogeneous initial condition</td>
<td>16</td>
</tr>
<tr>
<td>1.3.2.3 Random initial condition</td>
<td>17</td>
</tr>
<tr>
<td>1.3.2.4 Almost homogeneous initial condition</td>
<td>17</td>
</tr>
<tr>
<td>II. Floor Field Cellular Automaton (FFCA)</td>
<td>19</td>
</tr>
<tr>
<td>2.1 Floor fields</td>
<td>20</td>
</tr>
<tr>
<td>2.2 Transition probabilities</td>
<td>22</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>2.3</td>
<td>Matrix of preference</td>
</tr>
<tr>
<td>2.4</td>
<td>Friction</td>
</tr>
<tr>
<td>2.5</td>
<td>FFCA algorithm overview</td>
</tr>
<tr>
<td>2.6</td>
<td>Possible model extensions</td>
</tr>
<tr>
<td>2.7</td>
<td>Modified matrix of preference</td>
</tr>
<tr>
<td>III</td>
<td>The Hermes project</td>
</tr>
<tr>
<td>3.1</td>
<td>Simulation speed</td>
</tr>
<tr>
<td>3.2</td>
<td>Different modes of evacuation</td>
</tr>
<tr>
<td>3.3</td>
<td>Validation</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Fundamental diagram</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Entrance to the stands</td>
</tr>
<tr>
<td>3.4</td>
<td>Routing</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Shortest paths</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Quickest paths</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Stochastic routing</td>
</tr>
<tr>
<td>3.5</td>
<td>Distribution of evacuation times</td>
</tr>
<tr>
<td>3.6</td>
<td>Outlook</td>
</tr>
<tr>
<td>IV</td>
<td>Modeling of phase separation in pedestrian dynamics</td>
</tr>
<tr>
<td>4.1</td>
<td>Phase separation in driven transport models</td>
</tr>
<tr>
<td>4.2</td>
<td>Floor Field Cellular Automaton</td>
</tr>
<tr>
<td>4.3</td>
<td>Generalized Centrifugal Force Model</td>
</tr>
<tr>
<td>4.4</td>
<td>Adaptive Velocity Model</td>
</tr>
<tr>
<td>4.5</td>
<td>Simple CA Model</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Model definition</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Results</td>
</tr>
<tr>
<td>4.6</td>
<td>Distance Based Velocity Model</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Model definition</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Results</td>
</tr>
<tr>
<td>V</td>
<td>Stochastic Headway Dependent Velocity Model</td>
</tr>
<tr>
<td>5.1</td>
<td>Model definition</td>
</tr>
<tr>
<td>5.2</td>
<td>Initial condition</td>
</tr>
<tr>
<td>5.3</td>
<td>Fundamental diagram</td>
</tr>
<tr>
<td>5.4</td>
<td>Velocity distribution</td>
</tr>
<tr>
<td>5.5</td>
<td>Trajectories</td>
</tr>
<tr>
<td>5.6</td>
<td>Order parameter</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Definition</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Results</td>
</tr>
<tr>
<td>5.7</td>
<td>Model modifications and parameter sensitivity</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Stopping probability</td>
</tr>
</tbody>
</table>

vii
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.2</td>
<td>Continuous time limit</td>
<td>94</td>
</tr>
<tr>
<td>5.7.2.1</td>
<td>Parallel update</td>
<td>97</td>
</tr>
<tr>
<td>5.7.2.2</td>
<td>Random sequential update</td>
<td>101</td>
</tr>
<tr>
<td>5.7.3</td>
<td>Minimum velocity</td>
<td>106</td>
</tr>
<tr>
<td>5.7.4</td>
<td>System size</td>
<td>110</td>
</tr>
<tr>
<td>5.8</td>
<td>Phase separation density regime</td>
<td>114</td>
</tr>
<tr>
<td>5.9</td>
<td>Phase separation mechanism</td>
<td>119</td>
</tr>
<tr>
<td>5.10</td>
<td>Requirements for phase separation</td>
<td>120</td>
</tr>
<tr>
<td>5.11</td>
<td>Outlook</td>
<td>123</td>
</tr>
</tbody>
</table>

VI. Conclusion

APPENDICES

A. Additional plots from the SHDV model

B. Publications and talks

B.1 Publications

B.2 Talks

BIBLIOGRAPHY

ERKLÄRUNG
The increasing importance and magnitude of large-scale events in our society calls for continuous research in the field of pedestrian dynamics. This dissertation investigates the dynamics of pedestrian motion at high densities using computer simulations of stochastic models.

The first part discusses the successful application of the Floor Field Cellular Automaton (FFCA) in an evacuation assistant that performs faster than real-time evacuation simulations of up to 50,000 persons leaving a multi-purpose arena. A new interpretation of the matrix of preference improves the realism of the FFCA simulation in U-turns, for instance at the entrance to the stands.

The focus of the second part is the experimentally observed feature of phase separation in pedestrian dynamics into a slow-moving and a completely jammed phase. This kind of phase separation is fundamentally different to known instances of phase separation in e.g. vehicular traffic. Different approaches to modeling the phase separation are discussed and an investigation of both established and new models of pedestrian dynamics illustrates the difficulties of finding a model able to reproduce the phenomenon. The Stochastic Headway Dependent Velocity Model is introduced and extensively analyzed, simulations of the model evolve into a phase-separated state in accordance with the experimental data. Key components of the model are its slow-to-start rule, minimum velocity, and large interaction range.

This publication was edited at the Jülich Supercomputing Centre (JSC) which is an integral part of the Institute for Advanced Simulation (IAS). The IAS combines the Jülich simulation sciences and the supercomputer facility in one organizational unit. It includes those parts of the scientific institutes at Forschungszentrum Jülich which use simulation on supercomputers as their main research methodology.