Optical near-field investigations of photonic structures for application in silicon-based thin-film solar cells

Alexander Markus Ermes
Optical near-field investigations of photonic structures for application in silicon-based thin-film solar cells

Alexander Markus Ermes
Contents

1 INTRODUCTION 1

I FUNDAMENTALS 5
2 SILICON BASED THIN-FILM SOLAR CELLS 9
 2.1 Light scattering in thin-film devices 12
 2.2 Tandem thin-film solar cells 13
3 SIMULATION METHODS AND MODELS 15
 3.1 Finite-Difference Time-Domain algorithm 15
 3.1.1 MEEP FDTD solver 17
 Custom interface to MEEP used in this thesis 17
 Limitations of the simulation software 18
 3.2 Improved scalar scattering model 20
4 ANALYSIS METHODS 21
 4.1 Intensity distribution 21
 4.2 Absorptance 21
 4.3 External Quantum Efficiency 22
 4.4 Absorption Planes 23
 4.5 Spectral Haze 27
 4.6 Angular Intensity Distribution 27
5 EXPERIMENTAL METHODS 29
 5.1 Atomic Force Microscopy 29
 5.2 Angular Resolved Scattering 30
 5.3 Scanning Near-Field Optical Microscope 31

II RESULTS 35
6 FAR-FIELD SCATTERING 37
 6.1 FDTD vs. scalar model 37
 6.1.1 Spectral haze 40
 6.1.2 Angular intensity distribution 42
 6.1.3 Near-field effects 45
 6.1.4 Remarks about the use of the phase model 48
 6.2 Scattering at flat front side and textured back side 49
 6.2.1 AID measurements, PM and FDTD 52
 6.2.2 Quantum efficiency and absorptance enhancement 55
 6.2.3 Conclusion 58
7 ABSORPTION AND QUANTUM EFFICIENCY 59
 7.1 Non-conformal interfaces 59
 7.2 Simple texture modifications 65
7.2.1 a-Si:H cell with PEC back contact 67
7.2.2 a-Si:H cell with a μc-Si:H back side 71
7.3 Textures optimised for light scattering 74
 7.3.1 PM results 80
 7.3.2 FDTD results 80
 7.3.3 Conclusion 81
7.4 A complete tandem solar cell 82

8 FDTD SIMULATIONS AND NEAR-FIELD MICROSCOPY 87
 8.1 Post-processing algorithm for topography artefacts 87
 8.1.1 The post-processing algorithm 88
 8.1.2 Samples 90
 8.1.3 Offset Maps 90
 8.1.4 Intensity Maps 92
 8.2 Incorporating the near-field tip into simulations 96
 8.2.1 Collecting tip over an idealised crater 96
 8.2.2 Conclusion 105

III SUMMARY AND OUTLOOK 107

9 SUMMARY 109
10 OUTLOOK 113

IV APPENDIX 115
 A DOCUMENTATION FOR THE SIMULATION SOFTWARE 117
 B CONVERGENCE TESTS AND CONSIDERATION OF DIFFERENT RESOLUTIONS 121

Bibliography 124
List of Figures 149
Nomenclature 150
Acknowledgement 153
Assurance 157
Optical near-field investigations of photonic structures for application in silicon-based thin-film solar cells

Alexander Markus Ermes