IEK-3 Report 2015
Systems Research and Technology for a Sustainable Energy Supply

IEK-3 is one of the ten subinstitutes that currently constitute the Institute of Energy and Climate Research. Research work at IEK-3 focuses on providing technical solutions for a sustainable energy supply chain utilizing electrochemical energy conversion processes. Priority is given to electrochemistry and process engineering for solid oxide and polymer electrolyte fuel cells with and without reforming as well as for water electrolysis. These conversion technologies are investigated by an interdisciplinary team of scientists – from the underlying scientific principles to application in technical systems. IEK-3 not only has laboratories for imaging, physicochemical and electrochemical investigations, but also facilities for preparation and sample pretreatment. In addition, universal and specialized test setups enable extensive operational testing and characterization of diverse converters with dimensions ranging from a square centimetre to square metres. In anticipation of technology transfer, IEK-3 has established a technical facility to concurrently fabricate functional layer systems, such as electrodes, gas diffusion layers and membrane electrode assemblies, in a reproducible manner on an industrial scale. The facility also enables the precise assembly of multicomponent stacks. Process and systems analyses make it possible to identify and evaluate promising future R&D topics, to compare in-house technological developments with conventional technologies, to design energy pathways and energy supply networks, and to derive recommendations and provide guidance for interested sectors of society. IEK-3 cooperates closely with universities and other educational establishments, providing an extensive range of further education and training opportunities.

The future energy demand will be covered predominantly by renewables like wind, water and the sun in decentralized units. The associated fluctuating provision of energy necessitates the construction of industrial-scale electrolyzers, storage solutions and reserve power plants.

Electrolysis is a primary conversion process which converts renewable excess power into hydrogen for compressed gas storage in large salt domes. A pipeline network for transporting and distributing large quantities of \(\text{H}_2 \) will ensure the economic and safe supply of \(\text{H}_2 \) to filling stations and other places of use such as refineries and reserve power plants.

In addition the direct use of \(\text{H}_2 \) in cars, buses and transporters with fuel cell drives, its indirect use as a biofuel is a promising option for avoiding \(\text{CO}_2 \) emissions in the aircraft, truck, rail and marine sectors. To produce the fuel on an industrial scale, biomass-based carbon is processed together with \(\text{H}_2 \) in a refinery to create a liquid biofuel, which is then transported by trailers to the various dispersers at bio- or airport filling stations.
IEK-3 Report 2015

Systems Research and Engineering for a Sustainable Energy Supply
Forward

1 Contributions to International Conferences

1.1 Preparation, organization and result of ICEPE 2013 .. 6
1.2 Scientific coordination of TRENDS 2015 ... 10

2 Education and Training

2.1 University education ... 14
2.2 Provision of information and further education ... 19

3 Scientific and Technical Reports

3.1 Solid oxide fuel cells ... 24
3.2 Fuel processing and systems ... 37
3.3 High-temperature polymer electrolyte fuel cells .. 48
3.4 Direct Methanol Fuel Cells ... 61
3.5 Polymer Electrolyte Membrane Electrolysis .. 72
3.6 Process and Systems Analysis .. 85
3.7 Physicochemical and electrochemical principles .. 93
3.8 Quality assurance ... 103

4 Selected Results

4.1 Diffusion and ion conduction along ceramic interfaces ... 106
4.2 Mobile fuel processing systems with middle distillates for HT-PEFCs 111
4.3 Water distribution in the HT-PEFC .. 120
4.4 Efficiency aspects of high-pressure water electrolysis .. 123
4.5 Market launch of fuel cells for cars with renewable hydrogen 129

5 Ausblick auf neue FuE-Vorhaben

5.1 Development of a reversible system based on an SOFC 138
5.2 Metallic bipolar plates for HAT-PEFCs .. 143
5.3 The electrolysis pilot project at the JuHY hydrogen demonstration facility 148
5.4 More flexibility using integrated energy supply systems 153

6 Facts and Figures

6.1 IEK-3: Institute of Electrochemical Process Engineering .. 160
6.2 Overview of department expertise .. 163
6.3 Publikationen, Technologietransfer und Ressourcen ... 167
6.4 Committee work ... 169
6.5 Contributions to trade fairs and exhibitions .. 172
6.6 How to reach us .. 174
6.7 List of Abbreviations ... 177
IEK-3 Report 2015
Systems Research and Technology for a Sustainable Energy Supply

Institute of Energy and Climate Research – Electrochemical Process Engineering (IEK-3)

IEK-3 is one of the ten subinstitutes that currently constitute the Institute of Energy and Climate Research. Research work at IEK-3 focuses on providing technical solutions for a sustainable energy supply chain utilizing electrochemical energy conversion processes. Priority is given to electrochemistry and process engineering for solid oxide and polymer electrolyte fuel cells with and without reforming as well as for water electrolysis. These conversion technologies are investigated by an interdisciplinary team of scientists – from the underlying scientific principles to application in technical systems. IEK-3 not only has laboratories for imaging, physicochemical and electrochemical investigations, but also facilities for preparation and sample pretreatment. In addition, universal and specialized test setups enable extensive operational testing and characterization of diverse converters with dimensions ranging from a square centimetre to square metres. In anticipation of technology transfer, IEK-3 has established a technical facility to concurrently fabricate functional layer systems, such as electrodes, gas diffusion layers and membrane electrode assemblies, in a reproducible manner on an industrial scale. The facility also enables the precise assembly of multicomponent stacks. Process and systems analyses make it possible to identify and evaluate promising future R&D topics, to compare in-house technological developments with conventional technologies, to design energy pathways and energy supply networks, and to derive recommendations and provide guidance for interested sectors of society. IEK-3 cooperates closely with universities and other educational establishments, providing an extensive range of further education and training opportunities.

The future energy demand will be covered predominantly by renewables like wind, water and the sun in decentralized units. The associated fluctuating provision of energy necessitates the construction of industrial-scale electrolyzers, storage solutions and reserve power plants.

Electrolysis is a primary conversion process which converts renewable excess power into hydrogen for compressed gas storage in large salt domes. A pipeline network for transporting and distributing large quantities of H₂ will ensure the economic and safe supply of H₂ to filling stations and other places of use such as refineries and reserve power plants.

In addition the direct use of H₂ in cars, buses and transporters with fuel cell drives, its indirect use as a biofuel is a promising option for avoiding CO₂ emissions in the aircraft, truck, rail and marine sectors. To produce the fuel on an industrial scale, biomass-based carbon is processed together with H₂ in a refinery to create a liquid biofuel, which is then transported by trailers to the various dispersers at bio- or airport filling stations.