Defect Engineering of SrTiO$_3$ thin films for resistive switching applications

Sebastian Wicklein
Contents

1 Introduction .. 1

2 Background ... 5
 2.1 SrTiO$_3$.. 5
 2.2 Defect chemistry of SrTiO$_3$... 5
 2.2.1 Defect chemical equilibrium & reactions for SrTiO$_3$.. 6
 2.2.2 Conductivity of SrTiO$_3$... 8
 2.2.3 Electronic structure of SrTiO$_3$... 10
 2.2.4 Electrical doping of SrTiO$_3$ by B-site cations .. 11
 2.3 Space charge considerations ... 11
 2.4 Non-stoichiometry, Lattice distortions and 2$^{\text{nd}}$ phase formation in SrTiO$_3$ 12
 2.5 Resistive switching oxides for future memory devices .. 14

3 Setup of a UHV-oxide Cluster-Tool ... 17
 3.1 Deposition-Tools .. 19
 3.1.1 PLD (Laser-MBE) with RHEED and OIRD .. 19
 3.1.2 Sputtering tool .. 21
 3.1.3 E-beam PVD .. 21
 3.2 Characterization-Tools .. 22
 3.2.1 SPM-Tool with LC-AFM, NC-AFM, STM & Q-plus .. 22
 3.2.2 X-ray photoemission spectroscopy (XPS) ... 22
 3.2.3 Nano-ESCA / PEEM ... 23
 3.2.4 LEED ... 23
 3.3 Engineering of a high-temperature (HT) holder ... 24
 3.3.1 Engineering .. 24
 3.3.2 Performance .. 25

4 Experimental ... 27
 4.1 PLD process and in-situ analysis methods for thin film defect engineering ... 27
 4.1.1 Ablation characteristics ... 27
 4.1.2 In-situ film growth analysis by RHEED ... 28
8 Investigations of the resistive switching properties of STO thin films 99
 8.1 LC-AFM investigations of the RS properties of STO thin films .. 99
 8.1.1 Pristine I(V) characteristics of STO thin films ... 101
 8.1.2 1D resistive switching characteristics of STO films .. 102
 8.1.3 LC-AFM characteristics of SrTiO$_{3-x}$... 105
 8.1.4 Resistive switching mapping (2D) of STO thin films .. 107
 8.1.5 I(V) characteristics of the pristine, LRS and HRS area ... 110
 8.1.6 Thickness dependence on the RS effect for STO films on Nb:STO 114
 8.1.7 Discussion .. 117
 8.2 STS analysis of resistive states in STO films and Nb:STO .. 120
 8.2.1 STS on STO thin films ... 121
 8.2.2 STS on Nb:STO single crystal (0.5wt%) ... 122
 8.2.3 Discussion .. 123
 8.3 In-situ chemical analysis of inscribed areas by PEEM (proof of concept) 124
 8.3.1 PEEM of inscribed areas .. 124
 8.3.2 Discussion .. 124
 8.4 Resistive switching dynamics ... 125
 8.5 Resistive Switching of MIM structures .. 126
 8.5.1 I(V) characteristics of SrTiO$_3$ thin films ... 126
 8.5.2 I(V) characteristics of Fe:STO thin films ... 128
 8.5.3 Discussion .. 130
 8.6 Discussion ... 131
 9 Conclusions ... 133
 9.1 Defect engineering ... 133
 9.2 Resistive switching properties ... 134