Interplay between Magnetism and Superconductivity in Iron Based High Temperature Superconductors

Stephen Price
Interplay between Magnetism and Superconductivity in Iron Based High Temperature Superconductors

Stephen Price
Contents

1 Introduction

2 Introduction to Superconducting Materials
 2.1 Conventional Superconductivity : BCS-Materials
 2.2 High T_c Superconductivity in Cuprate Materials
 2.2.1 Discovery of High T_c Superconductivity
 2.2.2 Magnetism and Superconductivity
 2.3 High T_c Superconductivity in Fe-based Materials
 2.3.1 Structural Properties
 2.3.2 The Phase Diagrams
 2.3.3 Magnetic Properties
 2.3.4 Band Structure and Fermiology
 2.3.5 Superconducting Gap Symmetry
 2.3.6 The Spin Resonance Mode

3 Experimental and Theoretical Basics
 3.1 Scattering Basics
 3.1.1 Basic Neutron Scattering Formulas
 3.1.2 The Fluctuation-Dissipation Theorem
 3.1.3 Longitudinal Polarization Analysis
 3.2 Neutron Scattering Instruments
 3.2.1 The Three Axis Spectrometer
 3.2.2 The Time of Flight Neutron Spectrometer

4 Effect of P- and Co-Doping on the Eu$^{2+}$ Magnetic Sublattice in EuFe$_2$As$_2$
 4.1 Introduction
 4.1.1 Motivation
 4.1.2 Nuclear and Magnetic Structure of Undoped EuFe$_2$As$_2$
 4.1.3 Pressure Induced Superconductivity in EuFe$_2$As$_2$
 4.1.4 Doping Induced Superconductivity in EuFe$_2$As$_2$
 4.2 Experimental Details
 4.3 Results and Discussion
 4.3.1 Magnetic Structure of EuFe$_2$(As$_{1-x}$P$_x$)$_2$ $x=0.05$, $x=0.15$
 4.3.2 Magnetic Structure of Eu(Fe$_{1-x}$Co$_x$)$_2$As$_2$ $x=0.014$, $x=0.025$
Interplay between Magnetism and Superconductivity in Iron Based High Temperature Superconductors

Stephen Price