Interplay between magnetic and dielectric phenomena at transition metal oxide interfaces

Daniel Schumacher
Interplay between magnetic and dielectric phenomena at transition metal oxide interfaces

Daniel Schumacher
Contents

1 Introduction 1

2 Transition Metal Oxides 3
  2.1 Electronic Structure of Perovskites: Crystal Field Splitting 4
  2.2 Ferroelectricity in SrTiO$_3$ and BaTiO$_3$ 6
  2.3 Ordering Phenomena in La$_{1-x}$Sr$_x$MnO$_3$ 7
     2.3.1 Magnetic Ordering: Exchange Mechanisms 8
     2.3.2 Phase diagrams of La$_{1-x}$Sr$_x$MnO$_3$ 10

3 Motivation for the Analysed Oxidic Heterostructures 13
  3.1 La$_{0.66}$Sr$_{0.33}$MnO$_3$/SrTiO$_3$: Exchange Bias Effect 13
  3.2 La$_{0.5}$Sr$_{0.5}$MnO$_3$/BaTiO$_3$: Artificial Multiferroicity 15

4 Scattering theory 17
  4.1 Basic principles and Born approximation 17
  4.2 X-ray diffraction (XRD) 19
  4.3 Grazing incidence scattering 21
     4.3.1 Continuum description 21
     4.3.2 X-ray reflectometry (XRR) 23
     4.3.3 Polarized Neutron reflectometry (PNR) 24
     4.3.4 X-ray Resonant Magnetic Scattering (XRMS) 25

5 Thin Film Deposition Techniques with Oxygen 31
  5.1 Growth modes of epitaxial thin film 31
  5.2 High Oxygen Pressure Sputter Deposition (HSD) 33
  5.3 Pulsed Laser Deposition (PLD) 34
  5.4 Oxide Molecular Beam Epitaxy 34

6 Experimental Methods 37
  6.1 Sample Characterization 37
     6.1.1 Rutherford Backscattering (RBS) 37
     6.1.2 Reflection High Energy Electron Diffraction (RHEED) 38
     6.1.3 Atomic Force Microscopy (AFM) 38
  6.2 Macroscopic Magnetic and Ferroelectric Analysis 39
     6.2.1 Vibrating Sample Magnetometry 39
     6.2.2 Electrical Hysteresis Measurements 40
  6.3 Mesoscopic Structural and Magnetic Analysis 40
     6.3.1 X-ray Reflectometry (XRR) and X-ray Diffraction (XRD) 41
     6.3.2 Polarized Neutron Reflectometry 41
     6.3.3 X-ray Resonant Magnetic Scattering (XRMS) in reflectometry geometry 42

7 Results and Discussion I: La$_{0.66}$Sr$_{0.33}$MnO$_3$/SrTiO$_3$ 45
  7.1 Preparation of stoichiometric LSMO single and LSMO/STO bilayers 45
Contents

7.2 Sizeable Exchange Bias induced by oxygen deficiencies .......................... 51
7.3 Drastically reduced magnetization at LSMO/STO interfaces in EB samples ... 58
7.4 Possible explanation of EB effect in the LSMO/STO thin film system ........... 77

8 Results and Discussion II: La_{0.5}Sr_{0.5}MnO_3/BaTiO_3 .......................... 79
8.1 Preparation of stoichiometric and epitaxial LSMO/BTO bilayers by OMBE ... 79
8.2 Macroscopic magnetic and ferroelectric characterization ......................... 86
8.3 Analysis of the magnetic depth profile .............................................. 89

9 Summary, Conclusion and Outlook ....................................................... 97
A. Fit results of the XRR and PNR data evaluation .................................. 101
B. List of Figures ...................................................................................... 113
C. Abbreviations ..................................................................................... 115
D. Physical Constants ............................................................................... 117

Bibliography ......................................................................................... 119

Acknowledgments .................................................................................. 127
Interplay between magnetic and dielectric phenomena at transition metal oxide interfaces

Daniel Schumacher