Emergent Phenomena in Correlated Matter
Eva Pavarini, Erik Koch, and Ulrich Schollwöck (Eds.)
Emergent Phenomena in Correlated Matter

Autumn School organized by
the Forschungszentrum Jülich
and the German Research School
for Simulation Sciences

at Forschungszentrum Jülich
23 – 27 September 2013
Contents

Preface

Introduction

1. Density Functional Theory for Emergents
 Robert O. Jones

2. Many-Electron States
 Erik Koch

3. Magnetism: Models and Mechanisms
 Eva Pavarini

4. The Variational Cluster Approximation
 Robert Eder

5. Magnetism: From Stoner to Hubbard
 Alexander I. Lichtenstein

6. Monte Carlo Methods with Applications to Spin Systems
 Werner Krauth

7. Monte Carlo Simulations of Quantum Spin Models
 Stefan Wessel

8. Quantum Theory of Molecular Magnetism
 Jürgen Schnack

9. Recent Advances in Experimental Research on High-Temperature Superconductivity
 Bernhard Keimer

10. Strongly Correlated Superconductivity
 André-Marie S. Tremblay

11. Superconductivity: 2D Physics, Unknown Mechanisms, Current Puzzles
 Warren E. Pickett

 Rolf Heid

13. Eliashberg Theory
 Giovanni A.C. Ummarino

14. Path Integral Methods for Continuum Quantum Systems
 David M. Ceperley

15. Auxiliary-Field Quantum Monte Carlo for Correlated Electron Systems
 Shiwei Zhang

16. DMRG: Ground States, Time Evolution, and Spectral Functions
 Ulrich Schollwöck

17. Entanglement and Tensor Network States
 Jens Eisert

Index
1. **The LDA+DMFT approach to strongly correlated materials**
 Lecture Notes of the Autumn School 2011 Hands-on LDA+DMFT
 ISBN: 978-3-89336-734-4

2. **Correlated Electrons: From Models to Materials**
 Lecture Notes of the Autumn School on Correlated Electrons 2012
 ISBN: 978-3-89336-796-2

3. **Emergent Phenomena in Correlated Matter**
 Lecture Notes of the Autumn School on Correlated Electrons 2013
 edited by E. Pavarini, E. Koch, U. Schollwöck (2013), 520 pages
 ISBN: 978-3-89336-884-6