Computational simulations and thus scientific computing is the third pillar alongside theory and experiment in today's science. The term e-Science evolved as a new research field that focuses on collaboration in key areas of science using next generation data and computing infrastructures (i.e., e-Science infrastructures) to extend the potential of scientific computing. During the past decade, significant international and broader interdisciplinary research is increasingly carried out by global collaborations that often share resources within a single production e-Science infrastructure. More recently, increasing complexity of e-Science applications that embrace multiple physical models (i.e., multi-physics) and consider a larger range of scales (i.e., multi-scale) is creating a steadily growing demand for world-wide interoperable infrastructures that allow for new innovative types of e-Science by jointly using different kinds of e-Science infrastructures. But interoperable e-Science infrastructures are still not seamlessly provided today and this thesis argues that this is due to the absence of a production-oriented e-Science infrastructure reference model. The goal of this thesis is thus to present an infrastructure interoperability reference model (IIRM) design tailored to production needs and that represents a trimmed-down version of the Open Grid Service Architecture (OGSA) in terms of functionality and complexity, while on the other hand being more specifically useful for production and thus easier to implement. This reference model is underpinned with lessons learned and numerous experiences gained from production e-Science application needs through accompanying academic case studies of the bio-informatics, e-Health, and fusion domain that all seek to achieve research advances by using interoperable e-Science infrastructures on a daily basis. Complementary to this model, a seven segment-based process towards sustained infrastructure interoperability addresses important related issues like harmonized operations, cooperation, standardization as well as common policies and joint development roadmaps.

This publication was edited at the Jülich Supercomputing Centre (JSC) which is an integral part of the Institute for Advanced Simulation (IAS). The IAS combines the Jülich simulation sciences and the supercomputer facility in one organizational unit. It includes those parts of the scientific institutes at Forschungszentrum Jülich which use simulation on supercomputers as their main research methodology.
Design and Applications of an Interoperability Reference Model for Production e-Science Infrastructures

Morris Riedel
Contents

1 **Introduction** 1
 1.1 Terminologies ... 3
 1.2 Thesis Objectives and Contributions 4
 1.3 Related Topics Out of Thesis Scope 6
 1.4 Selected Publications and Demonstrations 8
 1.5 Thesis Structure 10

2 **State-of-the-art e-Science Infrastructures** 13
 2.1 Grid and e-Science Infrastructure Concepts 14
 2.1.1 e-Science Infrastructure Fundamentals 14
 2.1.2 Resource Sharing in e-Science Infrastructures 16
 2.1.3 Classification of e-Science Applications 19
 2.2 Key Technologies and Standards for e-Science Infrastructures 23
 2.2.1 Resource Management Systems and Grid Middleware 23
 2.2.2 Service-Oriented Technologies 24
 2.2.3 Common Open Standards in the e-Science Domain 25
 2.3 e-Science Infrastructure Interoperability Challenges 28
 2.3.1 Classification of e-Science Infrastructure Types 28
 2.3.2 Tightly Coupled Middleware Clusters in e-Science Infrastructures 30
 2.3.3 Benefits of a Network of Interoperable Services 32
 2.4 Conclusion ... 35

3 **Related Work** 37
 3.1 Identification of Relevant Approaches and Factors 38
 3.1.1 Reference Model Foundations and Factors 38
 3.1.2 Open Grid Services Architecture Analysis 42
 3.1.3 Component-based Approach Review 49
 3.2 Survey of Related Reference Models 53
 3.2.1 Enterprise Grid Alliance Reference Model 54
 3.2.2 OASIS Service Component Architecture 56
 3.2.3 Reference Model for Open Distributed Processing 58
 3.2.4 Common Component Architecture 59
 3.2.5 Coloured Petri Nets Reference Model 61
 3.3 Classification of Component-based Approaches 64
 3.3.1 Additional Layer Concepts 65
 3.3.2 Neutral Bridge Concept 68
 3.3.3 Gateway Approach .. 70
 3.3.4 Mediator Approach 71
 3.3.5 Adapter Approach 72
Contents

3.3.6 Middleware Co-existence .. 73
3.4 Conclusion ... 75

4 Requirements

4.1 Reference Model and Associated Elements Requirements 78
4.1.1 Reference Model Blueprint and Entity Requirements 78
4.1.2 Reference Model Entity Relationships 81
4.1.3 General Technical Reference Architecture Requirements 84

4.2 Functional Requirements ... 88
4.2.1 Reference Architecture Core Building Blocks 88
4.2.2 Improved e-Science Applications Executions 92
4.2.3 Improved Processing and Data-staging Capabilities 94

4.3 Non-functional Requirements 97
4.3.1 e-Science Production Infrastructure Integration Constraints 97
4.3.2 Requirements for Interoperable Infrastructure Usage Model 100
4.3.3 Process Requirements for Sustained Infrastructure Interoperability 102

4.4 Conclusion ... 105

5 Architectural Design

5.1 Reference Model Design and Associated Architecture Work 108
5.1.1 The Infrastructure Interoperability Reference Model Design 108
5.1.2 Associated Reference Architecture General Design 112
5.1.3 Detailed Associated Reference Architecture Core Building Blocks 116
5.1.4 Associated Reference Architecture Infrastructure Integration Constraints 122
5.1.5 Overall Run-time Pattern for Associated Architecture Work 128
5.1.6 Security Pattern for Associated Architecture Work 132

5.2 Design Layout and Essential Functionality 139
5.2.1 e-Science Application Concepts 139
5.2.2 Application Execution Adjacencies Concepts 144
5.2.3 High Performance Computing Extensions 148
5.2.4 Sequence Support for Computational Jobs 154
5.2.5 Manual Data-staging Concepts 157
5.2.6 Enhanced Accounting and Data Management Concepts 162

5.3 Seven Segment-based Process for Infrastructure Interoperability 167
5.3.1 Segment 1: Open Standards-based Reference Model and Architecture .. 169
5.3.2 Segment 2: Collaboration with the Right Set of Technology Providers 171
5.3.3 Segment 3: Reference Architecture Implementations 173
5.3.4 Segment 4: Standardisation Feedback Ecosystem 174
5.3.5 Segment 5: Aligned Future Strategies and Roadmaps 176
5.3.6 Segment 6: Harmonised Operation Policies 178
5.3.7 Segment 7: Funding Sources and Cross-Project Coordination 179

5.4 Conclusion ... 182

6 Impact and e-Science Applications

6.1 Seven Segment-based Process Implementation and Impact 184
6.1.1 Segment 1: IIRM and Standards-based Reference Architecture 185
6.1.2 Segment 2: Collaboration of Infrastructures with Technology Providers 188
6.1.3 Segment 3: IIRM Reference Architecture Implementations 189
6.1.4 Segment 4: The GIN and PGI Standardisation Feedback Ecosystem 190
CONTENTS

6.1.5 Segment 5: Aligning Middleware Roadmaps with EMI and XSEDE ... 193
6.1.6 Segment 6: Harmonized Security Setups and Operation Policies 195
6.1.7 Segment 7: Funding and Cross-Project Collaborations 196

6.2 Concrete Architectures of Production e-Science Infrastructures 198

6.2.1 Reference Model and Architecture Adoptions 199
6.2.2 European e-Science Infrastructures Setup 201
6.2.3 US and other e-Science Infrastructures Setups 207
6.2.4 Related Models for e-Science Applications 211

6.3 Architecture Implementation for the WISDOM Applications 214

6.3.1 Basic Framework of the WISDOM Initiative 215
6.3.2 Scientific Applications of the Bio-informatics Domain 217
6.3.3 Academic Analysis and Production Infrastructure Setup Experience ... 218
6.3.4 Reference Model Impact and Applicability 220

6.4 Architecture Implementation for the VPH Applications 225

6.4.1 The STEP Roadmap and the Basic VPH Framework 226
6.4.2 Scientific Applications of the e-Health Domain 228
6.4.3 Academic Analysis and Production Infrastructure Setup Experience ... 229
6.4.4 Reference Model Impact and Applicability 230

6.5 Architecture Implementation for the EUFORIA Applications 236

6.5.1 The EUFORIA Framework ... 237
6.5.2 Scientific Applications of the Fusion Domain 239
6.5.3 Academic Analysis and Production Infrastructure Setup Experience ... 240
6.5.4 Reference Model Impact and Applicability 242

6.6 Architecture Implementations for ESFRI and other Applications 246

6.6.1 Basic Framework for ESFRI Projects 247

6.7 Conclusion .. 249

7 Conclusion .. 251
Computational simulations and thus scientific computing is the third pillar alongside theory and experiment in today's science. The term e-Science evolved as a new research field that focuses on collaboration in key areas of science using next generation data and computing infrastructures (i.e., e-Science infrastructures) to extend the potential of scientific computing. During the past decade, significant international and broader interdisciplinary research is increasingly carried out by global collaborations that often share resources within a single production e-Science infrastructure. More recently, increasing complexity of e-Science applications that embrace multiple physical models (i.e., multi-physics) and consider a larger range of scales (i.e., multi-scale) is creating a steadily growing demand for world-wide interoperable infrastructures that allow for new innovative types of e-Science by jointly using different kinds of e-Science infrastructures. But interoperable e-Science infrastructures are still not seamlessly provided today and this thesis argues that this is due to the absence of a production-oriented e-Science infrastructure reference model. The goal of this thesis is thus to present an infrastructure interoperability reference model (IIRM) design tailored to production needs and that represents a trimmed-down version of the Open Grid Service Architecture (OGSA) in terms of functionality and complexity, while on the other hand being more specifically useful for production and thus easier to implement. This reference model is underpinned with lessons learned and numerous experiences gained from production e-Science application needs through accompanying academic case studies of the bio-informatics, e-Health, and fusion domain that all seek to achieve research advances by using interoperable e-Science infrastructures on a daily basis. Complementary to this model, a seven segment-based process towards sustained infrastructure interoperability addresses important related issues like harmonized operations, cooperation, standardization as well as common policies and joint development roadmaps.

This publication was edited at the Jülich Supercomputing Centre (JSC) which is an integral part of the Institute for Advanced Simulation (IAS). The IAS combines the Jülich simulation sciences and the supercomputer facility in one organizational unit. It includes those parts of the scientific institutes at Forschungszentrum Jülich which use simulation on supercomputers as their main research methodology.