Material migration in tokamak plasmas with a three-dimensional boundary
Material migration in tokamak plasmas with a three-dimensional boundary

Ruth Laengner
Contents

1 Introduction 1

2 The concept of thermonuclear fusion and magnetic confinement 5
 2.1 The principle of thermonuclear fusion 5
 2.2 Magnetic confinement and the safety factor q 5
 2.3 The tokamak 8
 2.3.1 The high confinement mode 9
 2.3.2 The scrape-off layer 9
 2.4 Stochastisation of the magnetic field by resonant magnetic perturbations 12

3 Numerical codes 16
 3.1 The impurity transport code ERO 16
 3.1.1 Application of the ERO code 18
 3.2 Field line tracing 19

4 Experimental methods 24
 4.1 The tokamak TEXTOR 24
 4.1.1 Application of resonant magnetic perturbations with the dynamic ergodic divertor 24
 4.1.2 Diagnostics applied 28
 4.1.3 Observation of the material transport 32
 4.1.4 Determination of the heat flux from IR observation 33
 4.2 Post mortem surface analysis 37
 4.2.1 Colourimetric fringe analysis 37
 4.2.2 Nuclear reaction analysis 38
 4.2.3 Secondary ion mass spectrometry 39
 4.2.4 Profilometry 40

5 Impurity transport in a 3D stochastic edge 41
 5.1 Impact of drifts and sonic flows on impurity transport in the 3D scrape-off layer 45
 5.2 Discussion of the light emission observed 49
 5.3 Ion transport due to higher radial electric field E_r 53
 5.3.1 Description of the experimental configurations 54
 5.3.2 Local plasma effects in the static RMP case 56
 5.3.3 Indication of stochastic finger and 3D SOL flux tube at TL position during RMP sweep 60
5.4 Analysis of the poloidal structure in the 3D plasma boundary with field line tracing .. 64
5.4.1 3D structure during the static RMP case 64
5.4.2 Stochastic finger and 3D SOL flux tube during RMP sweep 65
5.5 Sonic flow effects for SOL impurity transport 68
5.6 Impurity transport modelling with the ERO code 71
5.6.1 Boundary conditions for axisymmetric ERO modelling as reference case 71
5.6.2 Modification of the code for the RMP cases 78
5.6.3 Electric fields in ERO with RMP fields applied 82
5.7 Estimation of changes in the radial electric field of divertor tokamaks during applied RMPs 87

6 Deposition of trace impurities in the 3D SOL 89
6.1 Characterisation of erosion and deposition balance for unperturbed edge plasmas ... 89
6.1.1 Deriving the local deposition efficiencies 90
6.1.2 Comparison of experimental results to TEXTOR experimental data base for deposition efficiencies 94
6.1.3 Modelling of the local trace impurity deposition 98
6.2 Carbon deposition in the 3D plasma boundary 106
6.2.1 Deposition in the stochastic finger domain under enhanced \(E_r \times B \)-drift conditions 106
6.2.2 Deposition in the 3D SOL flux tube domain under enhanced \(E_r \times B \)-drift conditions 112
6.2.3 Local deposition as a function of the 3D SOL position 118
6.2.4 Deposition during the sweep of the 3D structures 121

7 Formation of hydrogen containing carbon layers in the 3D scrape-off layer 125
7.1 Colourimetric fringe analysis of the deposited hydrogen containing carbon \(^{12}\)C layers .. 128
7.2 Deuterium retention analysed by nuclear reaction analysis 133

8 Summary and Outlook ... 137
Material migration in tokamak plasmas with a three-dimensional boundary

Ruth Laengner