Content

1. Summary
 1.1 Summary English
 1.2 Deutsche Zusammenfassung

2. Introduction
 2.1 Copper in biology
 2.2 Regulation of copper homeostasis in bacteria
 2.2.1 Cytoplasmic copper-responsive regulators: CopY, CueR, and CsoR
 2.2.2 Copper-dependent two-component systems
 2.3 Copper homeostasis in Corynebacterium glutamicum
 2.4 Aims of this work

3. Results
 3.1 The Two-Component Signal Transduction System CopRS of Corynebacterium glutamicum Is Required for Adaption to Copper-Excess Stress
 3.2 First insights into the sensing properties of the copper-responsive sensor kinase CopS of the CopRS two-component system in Corynebacterium glutamicum
 3.3 Copper homeostasis of Corynebacterium glutamicum is regulated by a CsoR-type repressor in combination with the two-component system CopRS
4. Discussion 58

4.1 Regulation of copper homeostasis in *C. glutamicum* 58
 4.1.1 The two-component system CopRS 59
 4.1.2 The cytoplasmic copper sensor CsoR 63

4.2 Copper homeostatic proteins 66

4.3 Copper influence on *C. glutamicum* physiology 69

4.4 Conclusion 70

5. References 73

6. Appendix 83

 6.1 Supporting Information - The two-component system CopRS 83
 6.2 Supporting Information - CsoR 88