NMR studies on the isolated C39 peptidase-like domain of ABC transporter Haemolysin B from *E. coli*: Investigation of the solution structure and the binding interface with HlyA

Justin Lecher
NMR studies on the isolated C39 peptidase-like domain of ABC transporter Haemolysin B from *E. coli*: Investigation of the solution structure and the binding interface with HlyA

Justin Lecher
Contents

Table of contents 1

List of figures V

List of tables VII

1. Introduction 1
 1.1. Membranes and membrane proteins 1
 1.1.1. Forms of transport over membranes in biological systems 2
 1.2. ABC transporter 3
 1.2.1. The blueprint of an ABC transporter 4
 1.2.2. Nucleotide Binding Domain (NBD) 5
 1.2.3. Transmembrane Domain (TMD) 6
 1.2.4. Substrate Binding Protein (SBP) 6
 1.2.5. C39 peptidase domains of bacteriocin exporters 7
 1.3. Type I secretion – The Haemolysin system 9
 1.3.1. Haemolysin A (HlyA) 10
 1.3.2. Haemolysin B (HlyB) 11
 1.3.3. TolC / HlyD 12

2. Aims 15

3. Scientific publications 17
 3.1. RTX toxin transporters shield its substrate prior to secretion via the unique
 function of its N-terminal domain 18
 3.2. 1H, 15N and 13C resonance assignment of the N-terminal C39 peptidase-like
 domain of the ABC transporter Haemolysin B (HlyB) 58
 3.3. Crystallization and preliminary X-ray crystallographic studies of an oligomeric
 species of a refolded C39 peptidase-like domain of the Escherichia coli ABC
 transporter haemolysin B 62

4. Additional contributions to scientific publications 67
 4.1. Resonance assignments of the nucleotide-free wildtype MloK1 cyclic nucleotide-
 binding domain 67
 4.2. Structural insights into conformational changes of a cyclic nucleotide-binding
 domain in solution from Mesorhizobium loti K1 channel 67

5. Summary 69

6. Zusammenfassung 71

7. Abbreviations 73

8. Bibliography 77
A. Appendix 87
A.1. Materials 88
A.1.1. Chemicals 88
A.1.2. Isotopically enriched chemicals 88
A.1.3. Size markers for gel electrophoresis (Protein and DNA Methods) 89
A.1.4. Enzymes 89
A.1.5. Bacterial strains 90
A.1.6. Commercial procedure kits 90
A.1.7. Oligonucleotide primers 90
A.1.8. Hardware and equipment 91
A.1.9. Plasmids 92
A.1.10. Databases 92
A.1.11. Software 93
A.2. Methods 94
A.2.1. Gel electrophoresis 94
A.2.1.1. Agarose gel electrophoresis 94
A.2.1.2. SDS – poly-acrylamide gel electrophoresis 95
A.2.2. Concentration determination of DNA and protein samples 96
A.2.3. Transformation of vector DNA into E. coli 96
A.2.4. Plasmid DNA isolation 97
A.2.5. DNA library entries 97
A.2.6.1. Polymerase chain reaction (PCR) 97
A.2.6.2. Site-directed mutagenesis 98
A.2.6.3. DNA sequencing 98
A.2.7. Purification of tobacco etch virus (TEV)-Protease 99
A.2.8. Expression and purification of C39-like 99
A.2.8.1. Cultivation of E. coli for protein expression 100
A.2.8.2. Expression of C39-like and cell harvesting 101
A.2.8.3. Cell rupture and immobilized metal affinity chromatography ... 101
A.2.8.4. Cleavage of His-Tag and removal of TEV protease by a 2nd IMAC 102
A.2.8.5. pH-shift and polishing step using size-exclusion chromatography 102
A.2.8.6. Concentration and storage of pure C39-like 103
A.2.9. NMR spectroscopy 103
A.2.9.1. Sample preparation for NMR spectroscopy 103
A.2.9.2. Acquisition and processing of NMR spectroscopy data 103
A.2.10. Resonance assignment with CcpNmr v2.1 106
A.2.11. Structure calculation using Aria 2 and CNS v.1.21 106
A.2.11.1. Restraints in NMR structure calculation 106
A.2.11.1.1. NOE-derived distance restraints 107
A.2.11.1.2. Restraints for H-bonds definition 107
A.2.11.1.3. Backbone torsion angle restraints 108
A.2.11.1.4. Isomers and protonation states 108
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.2.11.2. Aria 2 - semi automated resonance assignment</td>
<td>108</td>
</tr>
<tr>
<td>A.2.11.2.1. Procedure applied by Aria 2</td>
<td>109</td>
</tr>
<tr>
<td>A.2.11.2.2. Settings adjustable in Aria 2</td>
<td>109</td>
</tr>
<tr>
<td>A.2.12. Quality assessment of NMR structure ensemble</td>
<td>114</td>
</tr>
<tr>
<td>A.2.13. Dynamical parameters of C39-like in solution</td>
<td>114</td>
</tr>
<tr>
<td>A.2.14. Chemical shift perturbation (CSP) experiments</td>
<td>115</td>
</tr>
<tr>
<td>A.2.15. Aria 2 protocol (C39-project.xml)</td>
<td>116</td>
</tr>
<tr>
<td>A.3. Bibliography of Appendix</td>
<td>120</td>
</tr>
</tbody>
</table>
NMR studies on the isolated C39 peptidase-like domain of ABC transporter Haemolysin B from E. coli: Investigation of the solution structure and the binding interface with HlyA

Justin Lecher

Member of the Helmholtz Association