Keramiken und Keramikkombinationen zur Feinstpartikelabscheidung mit Hilfe thermisch induzierter Potentialfelder und Elektronenemissionen

David Wenzel
Keramiken und Keramikkombinationen zur Feinstpartikelabscheidung mit Hilfe thermisch induzierter Potentialfelder und Elektronenemissionen

David Wenzel
Inhaltsverzeichnis

Abbildungsverzeichnis VII
Tabellenverzeichnis IX

1 Einleitung 1
 1.1 Motivation dieser Arbeit 1
 1.2 Politischer Hintergrund 1
 1.2.1 Klimawandel 1
 1.2.2 Energiebedarf weltweit 2
 1.2.3 Situation in Deutschland 3
 1.3 Technologische Ansätze 4
 1.3.1 Druckkohlestaubfeuerung 4
 1.3.2 Oxyfuel und Oxycoal-AC 6
 1.3.3 IGCC 7
 1.3.4 Biomassevergasung 9
 1.4 Heißgasreinigung 11
 1.4.1 Herkömmliche Verfahren 11
 1.4.2 Untersuchung neuartiger Verfahren in der Versuchsanlage Dorsten 11
 1.5 Zielsetzung der vorliegenden Arbeit 13

2 Theoretische Grundlagen 15
 2.1 Impedanzspektroskopie 15
 2.2 Bandstruktur 17
 2.3 Austrittsarbeit 22
 2.4 Aufladung und Abscheidung der Partikel 26

3 Herstellung der Proben 29
 3.1 Probenformen 29
 3.2 Materialauswahl 29
Inhaltsverzeichnis

3.3 Untersuchte Keramiken ... 30
 3.3.1 Aluminiumoxid ... 30
 3.3.2 Ceroxid .. 31
 3.3.3 Chromoxid .. 31
 3.3.4 Magnesiumoxid ... 31
 3.3.5 Zirkoniumoxid ... 32
 3.3.6 Titandioxid ... 32
 3.3.7 Siliziumcarbid ... 33
 3.3.8 Mischkeramik SEPR 33

3.4 Keramikpille für elektrochemische Untersuchungen 34

3.5 Keramikrohre für Abscheideuntersuchungen 37
 3.5.1 Keramikrohre für Abscheidunguntersuchungen mit Materi-
 alkombinationen .. 37
 3.5.2 Keramikrohre für Abscheideuntersuchungen mit Emissionssp-
 annungen .. 39

4 Experimentelle Untersuchungsmethoden 41
 4.1 Elektrochemische Versuchseinrichtungen 41
 4.1.1 Durchführung der impedanzspektroskopischen Messungen .. 41
 4.1.2 Durchführung der Potentialdifferenzmessungen 46
 4.1.3 Durchführung der Bandlückenmessungen 47
 4.2 Versuchseinrichtungen zur Messung der Austrittsarbeiten 47
 4.2.1 Parallele Messung der Austrittsarbeite 47
 4.2.2 Passive Messung der Austrittsarbeite 49
 4.2.3 Spannungsunterstützte Messung der Austrittsarbeite 49
 4.3 Versuchseinrichtungen für Abscheidemessungen 51
 4.3.1 Zusammenarbeit mit Projektpartnern 51
 4.3.2 Grundaufbau für Abscheidemessungen 51
 4.3.3 Grundelemente der Versuchsaufbauten für Abscheidemes-
 sungen ... 52
 4.3.3.1 Partikelgenerierung 52
 4.3.3.2 Partikelklassierung 56
 4.3.3.3 Partikelabscheidung im Abscheideofen 57
 4.3.3.4 Partikelzählung 59
 4.3.3.5 Ladungsbestimmung 64
 4.3.4 Gesamtaufbauten für Keramikkombinationen und Einzelke-
 ramiken ... 64
5 Ergebnisse

5.1 Elektrochemische Charakterisierung 69
5.1.1 Impedanzspektroskopie 69
5.1.1.1 Leitfähigkeiten ... 69
5.1.1.2 Keramikkombinationen 75
5.1.1.3 Ladungsträger ... 80
5.2 Potentialdifferenzen ... 86
5.3 Gemessene Bandstrukturen 89
5.3.1 Bandlücken ... 89
5.4 Austrittsarbeiten ... 90
5.4.1 Parallele Messung ... 90
5.4.2 Passive Messung .. 92
5.4.3 Spannungsunterstützte Messung 94
5.4.4 Vergleich und Mittelung 96
5.4.5 Ferminiveau .. 105
5.4.6 Valenzband .. 107
5.4.7 Rekonstruierte Bandstrukturen 109
5.5 Abscheideversuche ... 113
5.5.1 Keramikkombinationen 113
5.5.1.1 Abscheideleistung 113
5.5.1.2 Partikelaufladung 120
5.5.2 Einzelkeramiken .. 122
5.5.2.1 Abscheideleistung mit Einzelkeramiken 122
5.5.2.2 Partikelaufladung bei Verwendung von Einzelkerami-
 ken .. 124
5.5.2.3 Emissionsfelder ohne Abscheidespannung 127
5.5.2.4 Emissionsfelder mit Abscheidespannungen 129

6 Zusammenfassung und Diskussion 139

Literaturverzeichnis ... 145

A Impedanzspektren .. XI
Keramiken und Keramikkombinationen zur Feinstpartikelabscheidung mit Hilfe thermisch induzierter Potentialfelder und Elektronenemissionen

David Wenzel