Development of thin film inorganic membranes for oxygen separation

Hyo Jeong Moon
Development of thin film inorganic membranes for oxygen separation

Hyo Jeong Moon
Table of Contents

List of figures ... III
List of tables .. IX
List of abbreviations .. X
List of symbols .. XII

1 Introduction .. 1
 1.1 CO₂ capture in fossil power plants ... 1
 1.2 Gas separation membranes for CCS ... 2
 1.3 Objective of this work ... 3

2 Fundamentals and background .. 4
 2.1 Mixed ionic-electronic conducting membranes for O₂/N₂ separation 4
 2.1.1 Fluorite-structured CGO (Ce₀.₈Gd₀.₂O₂₋₄) membrane .. 6
 2.1.2 Perovskite-structured LSCF (La₀.₅Sr₀.₅Co₀.₂Fe₀.₈O₃₋₋₄) membrane 7
 2.2 Asymmetric thin film membranes ... 9
 2.3 Wet chemical deposition ... 12
 2.3.1 Stabilization of dispersion ... 12
 2.3.2 Spin-/dip-coating ... 13
 2.3.3 Heat treatment of coating layer .. 16
 2.4 Physical vapour deposition .. 17
 2.4.1 DC-Sputtering ... 17
 2.4.2 Magnetron Sputtering ... 17
 2.4.3 Reactive sputtering ... 18
 2.4.4 Film Morphology ... 18

3 Experimental methods ... 20
 3.1 Ceramic substrate preparation ... 20
 3.2 Membrane manufacturing .. 22
 3.2.1 Manufacture of inorganic membrane by wet chemical deposition 22
 3.2.2 Manufacture of inorganic membrane by physical vapour deposition 26
 3.3 Characterization methods .. 29
 3.3.1 Mercury porosimetry ... 29
 3.3.2 Zeta-potential .. 29
 3.3.3 Particle size analysis .. 29
 3.3.4 Thermal analysis (TG/DTA) ... 30
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.5 X-ray diffraction (XRD)</td>
<td>30</td>
</tr>
<tr>
<td>3.3.6 Chemical analysis (ICP-OES)</td>
<td>31</td>
</tr>
<tr>
<td>3.3.7 Microscopy</td>
<td>32</td>
</tr>
<tr>
<td>3.3.8 Gas-tightness measurement</td>
<td>33</td>
</tr>
<tr>
<td>4 Results and discussion</td>
<td>36</td>
</tr>
<tr>
<td>4.1 Substrates</td>
<td>36</td>
</tr>
<tr>
<td>4.2 Characterization of CGO membrane by wet-chemical deposition</td>
<td>43</td>
</tr>
<tr>
<td>4.2.1 Development of coating liquids</td>
<td>43</td>
</tr>
<tr>
<td>4.2.2 Development of CGO membrane on WP/VSC (NiO/8YSZ) substrate</td>
<td>50</td>
</tr>
<tr>
<td>4.3 Characterization of CGO and LSCF membrane by PVD</td>
<td>63</td>
</tr>
<tr>
<td>4.3.1 Development of interlayer</td>
<td>63</td>
</tr>
<tr>
<td>4.3.2 Development of CGO membrane on 8YSZ substrate</td>
<td>67</td>
</tr>
<tr>
<td>4.3.3 Development of CGO membrane on NDCGO-Z substrate</td>
<td>81</td>
</tr>
<tr>
<td>4.3.4 Development of CGO membrane on aAl2O3 substrate</td>
<td>83</td>
</tr>
<tr>
<td>4.3.5 Development of CGO membrane on A30A substrate</td>
<td>90</td>
</tr>
<tr>
<td>4.3.6 Development of CGO membrane on WP/VSC (NiO/8YSZ) substrate</td>
<td>94</td>
</tr>
<tr>
<td>4.3.7 Development of LSCF membrane on 8YSZ and NDCGO-Z or -A substrates</td>
<td>99</td>
</tr>
<tr>
<td>5 Summary and outlook</td>
<td>103</td>
</tr>
<tr>
<td>References</td>
<td>109</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>117</td>
</tr>
</tbody>
</table>
Development of thin film inorganic membranes for oxygen separation

Hyo Jeong Moon