Index

1. Introduction 1

2. Basics and Methods 3
 2.1 Imaging of neurofunctions with positron emission tomography (PET) 3
 2.2 Steps of radioligand development 5
 2.2.1 Preceding considerations 6
 2.2.2 Selection and production of short-lived positron emitting radionuclides especially fluorine-18 7
 2.2.3 Development of labelling methods with fluorine-18 9
 2.2.4 Special methods in n.c.a. 18F-fluorination 12
 2.2.5 Pharmacological evaluation of radioligands for the central nervous system 19
 2.3 Dopamine receptors and ligands 24
 2.3.1 Subtypes of dopamine receptors – the D4 receptor 24
 2.3.2 Dopamine D4 receptor subtype-selective ligands 27
 2.4 Lipophilicity – A key property for radioligands 32

3. Aims and Scope 37

4. Synthesis and 18F-labelling of FAUC 316 39
 4.1 Syntheses of standard and precursor compounds 40
 4.1.1 Formation of 2-carboxylic indole via palladium mediated intramolecular coupling 41
 4.1.2 Formation of 2-carboxylic indole by intramolecular reductive amination 43
 4.1.3 Reduction of 5-cyano-2-carboxyindole ester 44
 4.1.4 Syntheses of iodonium precursors 46
 4.2 Radiosynthesis of [18F]FAUC 316 47
 4.2.1 Synthesis of 4-[18F]fluorobromobenzene and 4-[18F]fluoroiodo-benzene 47
 4.2.2 Piperidine and 1-methylpiperazine as model compounds for a radioactive palladium-catalyzed Buchwald-Hartwig cross-coupling 49
 4.2.3 Direct Buchwald-Hartwig coupling with 1-benzyl-2-(piperazine-1-yl-methyl)-1H-indole-5-carbonitrile 52
 4.2.4 Synthesis of [18F]FAUC 316 via 4-[18F]fluorophenylpiperazine 53
 4.2.5 Purification and isolation of [18F]FAUC 316 58
 4.3 Pharmacological evaluation of [18F]FAUC 316 63
 4.4 Interim summary 64
5. Synthesis, 18F-labelling and preclinical evaluation of benzodioxine derivatives 66
 5.1 Synthesis of benzodioxine standard and precursor compounds for 18F-labelling 67
 5.2 Receptor binding and intrinsic affinities 71
 5.3 Radiosynthesis of benzodioxine derivatives 75
 5.3.1 Direct n.c.a. 18F-labelling of benzodioxine derivatives 75
 5.3.2 Build-up synthesis of benzodioxine derivatives by reductive amination 77
 5.3.3 Comparison of 18F-labelling methods for benzodioxine derivatives 82
 5.4 Pharmacological evaluation of 18F-labelled benzodioxine derivatives as D$_4$ ligands 84
 5.4.1 Lipophilicity 84
 5.4.2 Autoradiography 85
 5.4.3 Biodistribution and in vivo stability 88
 5.5 Interim summary 92

6. Experimental 95
 6.1 Materials, chromatographic and spectrometric procedures 95
 6.2 Synthesis of $[^{18}F]$FAUC 316 96
 6.2.1 Syntheses of precursor and standard compounds 96
 6.2.2 Radiosyntheses 108
 6.3 Synthesis of benzodioxine derivatives 111
 6.3.1 Syntheses of precursor- and standard compounds 111
 6.3.2 Radiosyntheses 120
 6.3.3 Radioanalytical methods 123
 6.4 Pharmacology 131
 6.4.1 Determination of partition coefficients 131
 6.4.2 Animals 131
 6.4.3 In vitro autoradiography of rat and mouse brain slices 132
 6.4.4 Ex vivo biodistribution in mouse model 132
 6.4.5 In vivo stability of $[^{18}F]$33e 132
 6.4.6 Staining of brain slices by cresyl violet 133

7. Summary and Outlook 135

8. Literature 141