Inhaltsverzeichnis

Abstract 1
Kurzfassung 3

1 Einleitung 9

2 Grundlagen 13
 2.1 Die MOS-Diode 13
 2.1.1 Aufbau und Funktion 13
 2.1.2 Elektrische Eigenschaften 18
 2.2 Der MOSFET 21
 2.2.1 Aufbau und Funktion 21
 2.2.2 Wichtige Kenngrößen 25
 2.3 Skalierung von MOSFETs 27
 2.3.1 Geschichte 27
 2.3.2 Kritische Faktoren bei der Skalierung 27
 2.3.3 Mögliche Lösungen 30
 2.4 High-κ-Dielektrika 35
 2.4.1 Anforderungen an high-κ-Dielektrika 35
 2.4.2 Potenzielle Materialien 36
 2.4.3 Seltenerd-basierte binäre Oxide 37
 2.4.4 Seltenerd-basierte ternäre Oxide 39
 2.5 Metalle als Gatekontakte 42

3 Probenherstellung 45
 3.1 Gepulste Laserdeposition 45
 3.2 Elektronenstrahlverdampfen 48
 3.3 Atomic Layer Deposition (ALD) 50
 3.4 Sputterdeposition 53
 3.5 Prozessierung 56
 3.5.1 Verwendete Chemikalien und Geräte 56
 3.5.2 RCA-Reinigung 57
 3.5.3 Der MOS-Dioden-Prozess 58

5
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seitennummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.4</td>
<td>Der MOSFET-Prozess</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>Probencharakterisierung</td>
<td>65</td>
</tr>
<tr>
<td>4.1</td>
<td>Rutherford-Rückstreu-Spektrometrie</td>
<td>65</td>
</tr>
<tr>
<td>4.2</td>
<td>Röntgenbeugungsanalyse</td>
<td>67</td>
</tr>
<tr>
<td>4.3</td>
<td>Rasterkraftmikroskopie</td>
<td>70</td>
</tr>
<tr>
<td>4.4</td>
<td>Röntgen-Photoelektron-Spektrometrie</td>
<td>71</td>
</tr>
<tr>
<td>4.5</td>
<td>Innerer Photoeffekt und Photoleitung</td>
<td>72</td>
</tr>
<tr>
<td>4.6</td>
<td>Elektrische Charakterisierung</td>
<td>73</td>
</tr>
<tr>
<td>4.6.1</td>
<td>CET und EOT</td>
<td>73</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Charakterisierung der MOS-Kondensatoren</td>
<td>75</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Charakterisierung der MOSFETs</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>GdScO$_3$-Schichten</td>
<td>77</td>
</tr>
<tr>
<td>5.1</td>
<td>Chemische Zusammensetzung</td>
<td>77</td>
</tr>
<tr>
<td>5.2</td>
<td>Morphologie</td>
<td>79</td>
</tr>
<tr>
<td>5.3</td>
<td>Elektrische Charakterisierung</td>
<td>83</td>
</tr>
<tr>
<td>5.4</td>
<td>Zusammenfassung</td>
<td>87</td>
</tr>
<tr>
<td>6</td>
<td>LaLuO$_3$-Schichten</td>
<td>89</td>
</tr>
<tr>
<td>6.1</td>
<td>Chemische Zusammensetzung</td>
<td>89</td>
</tr>
<tr>
<td>6.2</td>
<td>Morphologie</td>
<td>93</td>
</tr>
<tr>
<td>6.3</td>
<td>Elektronische Eigenschaften</td>
<td>94</td>
</tr>
<tr>
<td>6.4</td>
<td>Elektrische Charakterisierung</td>
<td>96</td>
</tr>
<tr>
<td>6.5</td>
<td>Zusammenfassung</td>
<td>98</td>
</tr>
<tr>
<td>7</td>
<td>MOSFETs mit GdScO$_3$-Gateoxid</td>
<td>99</td>
</tr>
<tr>
<td>7.1</td>
<td>Modifikation der high-κ/Si-Grenzfläche</td>
<td>99</td>
</tr>
<tr>
<td>7.2</td>
<td>MOSFETs mit GdScO$_3$-Gateoxid auf Si(100)</td>
<td>100</td>
</tr>
<tr>
<td>7.3</td>
<td>SOI- und sSOI-MOSFETs mit GdScO$_3$-Gateoxid</td>
<td>103</td>
</tr>
<tr>
<td>7.4</td>
<td>Zusammenfassung</td>
<td>107</td>
</tr>
<tr>
<td>8</td>
<td>AlGaN/GaN-MISHFETs mit GdScO$_3$-Gateoxid</td>
<td>109</td>
</tr>
<tr>
<td>8.1</td>
<td>Motivation</td>
<td>109</td>
</tr>
<tr>
<td>8.2</td>
<td>Experimentelles</td>
<td>111</td>
</tr>
<tr>
<td>8.3</td>
<td>Ergebnisse</td>
<td>113</td>
</tr>
<tr>
<td>8.3.1</td>
<td>C-V- und I-V-Messungen</td>
<td>113</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Ausgangscharakteristik</td>
<td>115</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Load-Pull-Messungen</td>
<td>116</td>
</tr>
<tr>
<td>8.4</td>
<td>Zusammenfassung</td>
<td>118</td>
</tr>
<tr>
<td>9</td>
<td>Zusammenfassung der Ergebnisse und Ausblick</td>
<td>119</td>
</tr>
<tr>
<td>A</td>
<td>Literaturverzeichnis</td>
<td>123</td>
</tr>
</tbody>
</table>
B Danksagung 137
C Veröffentlichungen 141
D Lebenslauf 145