Contents

Annotation .. 15

List of Abbreviations .. V

List of Figures ... VIII

List of Tables .. IX

1 Introduction ... 1

1.1 History and use of the herbicide atrazine 1

1.2 Atrazine as an environmental hazard 2

1.3 Degradation, dissipation and transformation of atrazine 6

1.3.1 Bound residues formation 7

1.3.2 Atrazine degradation in the environment 8

1.4 Intention and goals of the presented doctoral research 10

1.4.1 Location, desorption and characterization of aged \(^{14}\text{C}\)-labeled

atrazine residues .. 11

1.4.2 Extraction and characterization of aged \(^{14}\text{C}\)-labeled atrazine residues 12

1.4.3 Evaluating bioaccessibility of aged \(^{14}\text{C}\)-labeled atrazine residues in

soil and soil size aggregates 12
1.4.4 Evaluating bioaccessibility of aged, soil bound 14C-labeled atrazine residues .. 13

2 Material and Methods .. 15
 2.1 Soil characteristics and atrazine application 15
 2.2 Physico-chemical analysis 16
 2.2.1 Soil sampling and treatment 16
 2.2.2 Liquid sample preparation and analysis 18
 2.2.3 LC-MS/MS-analysis .. 22
 2.3 Microbial cultures and conditions 26
 2.3.1 Biodegradation study of soil-bound 14C-atrazine residues: soil sample extraction 29
 2.3.2 Biodegradation study of soil-bound 14C-atrazine residues: soil-slurry inoculation 29

3 Results and Discussion ... 31
 3.1 General comments ... 31
 3.2 Chemico-physical and 14C-activity analysis of solid samples 32
 3.2.1 Soil and soil-aggregates 32
 3.2.2 Analysis of solid samples after AS-extraction 37
 3.2.3 Elementary analysis of solid samples prior to and after AS-extraction 39
 3.3 Chemico-physical and 14C-activity analysis of liquid samples 41
 3.3.1 Desorption experiments 41
 3.3.2 Carbon bound desorbed residual 14C-activity in liquid fractions .. 41
 3.3.3 DOM-fractions from various soil depths 43
 3.3.4 LC-MS/MS analysis of desorption liquids 46
 3.3.5 Analysis of ASE extracts 50
3.4 Mineralization of 14C-labeled atrazine associated residues in soil and soil-size aggregates ... 55
3.5 Evaluating bioaccessibility of naturally aged soil-bound 14C-atrazine residues 60
 3.5.1 Soil sample extraction/desorption .. 60
 3.5.2 Microbial mineralization of soil bound 14C-atrazine residues 62

4 Epilogue ... 69

5 Summary ... 75

Bibliography .. 79

Acknowledgements .. 103