Inaugural Session

01 Kehlhofer R.; ABB Power Generation (Switzerland)
POWER ENGINEERING - STATUS AND TRENDS

02 Heinloth K.; Universität Bonn (Germany)
ENERGY AND ENVIRONMENT - WISHFUL THINKING AND REALITY

Materials for Advanced Steam Cycle Plants

03 Metcalfe E., Scarlin B. *; National Power (Great Britain), * ABB Power Generation (Switzerland)
ADVANCED HIGH EFFICIENCY STEAM POWER PLANT

04 Kern T., Scarlin B.*, Vanstone R. **, Mayer K.H. *; Siemens KWU (Germany), * ABB Power Generation (Switzerland), **GEC Alstom (Great Britain), 'GEC Alsthom Energie (Germany)
HIGH TEMPERATURE FORGED COMPONENTS FOR ADVANCED STEAM POWER PLANTS

05 Mayer K.H., Hanus R.*, Kern T., Staubli M.*, Thornton D.V. **;
GEC Alsthom Energie (Germany), *Voest-Alpine Stahl (Austria), 'Siemens KWU (Germany), *AABB Power Generation (Great Britain), **GEC Alsthom (Great Britain)
HIGH TEMPERATURE CAST COMPONENTS FOR ADVANCED STEAM POWER PLANT

06 Staubli M., Bendick W.*, Orr J.**, Deshayes F.*, Henry Ch. *
ABB Power Generation (Switzerland), *Mannesmann Forschungsinstitut (Germany),
**British Steel (Great Britain), 'Centre de Recherches Vallourec (France), *ABB Enertech (Switzerland)
EUROPEAN, COLLABORATIVE EVALUATION OF ADVANCED BOILER MATERIALS

07 Cerjak H., Letofigs E., Staubli M.*
Technical University of Graz (Austria), * ABB Power Generation (Switzerland)
THE ROLE OF WELDING FOR COMPONENTS MADE FROM ADVANCED 9-12% Cr STEELS

08 Quadakkers W.J., Ennis P.J.; Forschungszentrum Jülich (Germany)
THE OXIDATION BEHAVIOUR OF FERRITIC AND AUSTENITIC STEELS IN SIMULATED POWER PLANT SERVICE ENVIRONMENTS

09 Vanstone R.W.; GEC Alsthom large Steam Turbines (Great Britain)
PROGRESS IN UNDERSTANDING MICROSTRUCTURE-PROPERTY RELATIONSHIPS IN ADVANCED 9-12% Cr STEELS

10 Hald J., Straub S.*, Foldyna V.**; Elsam/ElkraftTU Denmark (Denmark), * ABB Mannheim (Germany), * *Vitkovice Research Institute (Czech Republic)
MICROSTRUCTURAL STABILITY OF 9-12%CrMo(W)VNbN-STEELS

11 Strang A.; GEC Alsthom large Steam Turbines (Great Britain)
THE QUANTITATIVE EVALUATION OF MICROSTRUCTURE IN 9-12%Cr MARTENSITIC POWER PLANT STEELS
Materials for Corrosion Resistant Heat Exchangers

012 Oakey J.E., Simms N.J.; Cranfield University (Great Britain)
MATERIALS REQUIREMENTS FOR ADVANCED COAL FIRED POWER GENERATION TECHNOLOGIES

013 Simms N.J., Bregani F., Huijbregts W.M.M., Kokmeijer E., Oakey J.E.
Cranfield University (Great Britain), ENEL Research (Italy), KEMA Nederland BV (The Netherlands)
COAL GASIFICATION FOR POWER GENERATION: MATERIALS STUDIES

014 Rademakers P.L.F., Grossmann G., Karlsson A., Montgomery M., Eriksson T., Nylof L
TNO (The Netherlands), Krupp-VDM (Germany), Elkraft Power (Denmark), Technical University (Denmark), Studsvik Material (Sweden), AB Sandvik Steel (Sweden)
MATERIALS FOR WASTE INCINERATORS AND BIOMASS PLANTS

015 Starr F.; ERA Technology Ltd (Great Britain)
PRACTICAL EXPERIENCE IN THE DESIGN AND OPERATION OF AN INDIRECT FIRED GAS TURBINE PLANT USING AN ODS FERRITIC ALLOY HEATER

Materials for Gas Turbines

016 Schulenberg T.; Siemens KWU (Germany)
NEW DEVELOPMENT IN LAND-BASED GAS TURBINE TECHNOLOGY

017 Bullough C.K., Toulios M., Oehl M., Lukas P.
GEC Alsthom Power Generation (Great Britain), Engineering Consulting (Greece), ABB Power Generation (Switzerland), Academy of Science (Czech Republic)
THE CHARACTERISATION OF THE SINGLE CRYSTAL SUPERALLOY CMSX-4 FOR INDUSTRIAL GAS TURBINE BLADING APPLICATIONS

018 Toulios M., Mohrmann R., Fleury G., Hasselqvist M.
Engineering Consulting (Greece), Fraunhofer Institut für Werkstoffmechanik (Germany), Forschungszentrum Jülich (Germany), ABB Stal (Sweden)
DEFORMATION MODELLING OF THE SINGLE CRYSTAL SUPERALLOY CMSX-4 FOR INDUSTRIAL GAS TURBINE APPLICATIONS

019 Caron P., Khan T.; ONERA (France)
THIRD GENERATION SUPERALLOYS FOR SINGLE CRYSTAL BLADES

020 Härkegard G., Guedou J. Y.; NTNU (Norway), SNECMA (France)
DISC MATERIALS FOR ADVANCED LAND-BASED GAS TURBINES

021 Nazmy M. Y., Lupinc V.; ABB Power Generation (Switzerland), CRNTeMPE (Italy)
GAMMA TiAl INTERMETALLIC FOR GAS TURBINE APPLICATIONS

022 Naka S.; ONERA (France)
CONSIDERATIONS OF SOLIDIFICATION PATHS AND DEVELOPMENT OF NEW CASTABLE GAMMA TITANIUM ALUMINIDES

024 Bettridge D.F., Wing R., Saunders S.
Rolls-Royce (Great Britain), Chromalloy (Great Britain), National Physical Laboratory (Great Britain)
THE EXPLORATION OF PROTECTIVE COATINGS AND DEPOSITION PROCESSES FOR Ni BASE ALLOYS AND γ TiAl

025 Singheiser L., Steinbrech R., Sommer M., Boßmann H.P.
Forschungszentrum Jülich (Germany), ABB Research Centre (Germany)
THERMAL BARRIER COATINGS FOR GAS TURBINES: FAILURE MECHANISMS AND LIFE PREDICTION
On the Way to the 21st Century

026 Kvernes I., Lugscheider E.*, Ladru F.*; Kvernes Technology AS (Norway), *RWTH Aachen (Germany)
LIFETIME AND DEGRADATION PROCESSES OF TBCs FOR DIESEL ENGINES

028 Theenhaus R., Schubert F.; Forschungszentrum Jülich (Germany)
THE IMPACT OF MATERIALS RESEARCH FOR ENERGY TECHNOLOGIES PROVIDING FOR THE 21st CENTURY

029 Parks W.P. Jr., Hoffman P., Karnitz M.A.*, Wright I.G.*
U.S. Department of Energy (USA), *Oak Ridge National Laboratory (USA)
THE ADVANCED TURBINE SYSTEMS PROGRAM IN THE U.S.A.

030 Masuyama F.; Mitsubishi Heavy Industries (Japan)
STEAM PLANT MATERIAL DEVELOPMENTS IN JAPAN

031 Allen A., Oakey J.*, Scarlin B.** CEC(Alstom (Great Britain), *Cranfield University (Great Britain), ** ABB Power Generation (Switzerland)
THE NEW COST ACTION 522- POWER GENERATION IN THE 21st CENTURY: ULTRA EFFICIENT. LOW EMISSION PLANT
Posters A: Materials for Advanced Steam Cycle Plants

Steam Turbine Materials

Voest-Alpine Stahl Linz (Austria), *Technical University Graz (Austria)
INVESTIGATIONS OF LARGE TURBINE CASINGS AND VALVE BODIES MADE OF NEW 9-10% Cr-CAST STEELS AND IMPROVEMENT OF CASTING TECHNIQUE AND QUALITY PERFORMANCE

**Hosei University (Japan). **Daido Steel Corp. (Japan), Japan Casting and Forging Corp. (Japan)
CREEP PROPERTIES OF HEAVY WALL COMPONENTS FOR FORGED 9Cr-1.8W-0.5 Mo-NbVN (NF616) STEEL

A3 Kloc L., SkleniCka V.; Academy of Sciences (Czech Republic)
LOW STRESS CREEP OF P91 TYPE HEAT RESISTANT STEEL

A4 Fleury E., Ha j.S.; Korea Electric Power Res. Institute (South Korea)
SMALL PUNCH TESTS ON STEELS FOR STEAM POWER PLANT

A5 SkleniCka V., Kucha'i'ova K., Kloc L.; Academy of Sciences (Czech Republic)
MACROSCOPIC CONSTITUTIVE LAWS FOR CREEP LIFE PREDICTION

A6 Kunz L., Lukas P., Knesl Z.; Academy of Sciences (Czech Republic)
NOTCHED BEHAVIOUR OF P91 STEEL UNDER CREEP/FATIGUE LOADING

A7 Bina V., Bielak O.*, Hakl J.; SVUM (Czech Republic). *BiSAFE (Czech Republic)
CREEP CRACK GROWTH IN 9CrMoVNbN STEEL

A8 Abe F., Igarashi M., Fujitsuna N., Kimura K., Muneki S.; National Research Institute for Metals (Japan)
RESEARCH AND DEVELOPMENT OF ADVANCED FERRITIC STEELS FOR 650°C USC BOILERS

A9 Masuyama F., Komai N.; Mitsubishi Heavy Industries (Japan)
EFFECT OF RHENIUM ADDITION ON THE CREEP STRENGTH OF HEAT RESISTANT Cr-W STEELS

A10 Mohrmann R., Holstein T., Westerheide R.; Fraunhofer-Institut für Werkstoffmechanik (Germany)
MODELLING OF LOW-CYCLE FATIGUE BEHAVIOUR OF THE STEEL E911

A11 Cerjak H., Hofer P., Schaffemak B., Spiradek K.*, Zeiler G.** Technical University of Graz (Austria), Forschungszentrum Seibersdorf (Austria), * * Böhler Kapfenberg (Austria)
THE MAIN PARAMETERS INFLUENCING THE CREEP RESISTANCE OF ADVANCED 9-12% Cr-STEELS FOR POWER PLANT APPLICATIONS

A12 Taylor M., Thornton D.V., Vanstone R.W.; GEC Alsthom Large Steam Turbines (Great Britain)
EXPERIENCE IN THE MANUFACTURE OF STEAM TURBINE COMPONENTS IN ADVANCED 9.12% Cr STEELS

A13 KubOO Z., Foldyna V., Vodarek V.; Vitkovice (Czech Republic)
OPTIMISED CHEMICAL COMPOSITION OF 9-12% Cr STEELS WITH RESPECT TO MAXIMUM CREEP RESISTANCE

A14 Tchizhik A.A., Tchizhik T.A.*; The Polzunov Central Boiler and Turbine Inst. (Russia).
*The Turbine-Building Production Association (Russia)
THE OPTIMIZATION OF HEAT TREATMENT FOR STEAM AND GAS TURBINE PARTS FROM 10.5-12%Cr STEELS
NEWLY DEVELOPED 12%Cr HEAT RESISTANT STEELS FOR STEAM TURBINES

TSUDA Y., YAMADA M., ISHII R., WATANABE 0., MIYAZAKI M.; TOSHIBA CORPORATION (JAPAN)

A16 SÄUBERLICH T., PITZ G.*, LÖHE D.,* LEICO (GERMANY), *DAIMLER-BENZ AG (GERMANY), **UNIVERSITÄT KARLSRUHE (GERMANY)
THERMAL-MECHANICAL FATIGUE BEHAVIOUR OF A 9% Cr STEEL

A17 WACHTER O., ZABELT K., ENNIS P.J.*, HELLMRICH A.**, BÖHME A. # PREUSSEN ELEKTRA (GERMANY), FORSCHUNGSZENTRUM JÜLICH (GERMANY), **ENERGIE-UND VERFAHRENSTECHNIK (GERMANY), #GEMEINSCHAFTSKRAFTWERK (GERMANY)
THE DESIGN, MANUFACTURE AND INSTALLATION OF A P92 HEADER

Boiler Materials and Welding

A18 ARTINGER I.; TECHNICAL UNIVERSITY OF BUDAPEST (HUNGARY)
EFFECT OF WELDING AND AGEING ON PROPERTIES OF NEW 9-12% STEELS

A19 JAKOBOVA A., VODAREK V., HENNOFER K., FOLDYNA V. VITKOVICE (CZECH REPUBLIC), *VSB-TECHNICAL UNIVERSITY OF OSTRAVA (CZECH REPUBLIC)
MICROSTRUCTURE AND CREEP PROPERTIES OF P91 STEEL AND WELDMETS

A20 BICEGO V., BONTEMPI P., MARIANI R., TAYLOR N.*; ENEL SPA/SRI/PDM (ITALY), *CISE (ITALY)
FATIGUE BEHAVIOUR ON MODIFIED 9Cr STEELS : BASE AND WELDS

A21 SATO T., TAMURA K., MSTUSHATA K., IKURA R.; BABBCOCK-HITACHI (JAPAN)
IMPROVEMENT OF CREEP RUPTURE STRENGTH OF 9Cr1MoNbV WELDED JOINTS BY NORMALIZING AND TEMPERING AFTER WELD

A22 CERJAK H., LETOFSKY E., FEIGL G.*, PICHLER P.* TECHNICAL UNIVERSITY OF GRAZ (AUSTRIA), *AUSTRIAN ENERGY & ENVIRONMENT (AUSTRIA)
CHARACTERISATION OF THE WELDABILITY AND BEHAVIOUR OF THE HEAT AFFECTED ZONE FOR STEEL E911

A23 HAYASHI K., KOJIMA T., MINAMI Y., TOHYAMA A.; NKK CORPORATION (JAPAN)
DEVELOPMENT OF 12%Cr HEAT RESISTANT STEEL PLATE (TEMPALOY F-12M) FOR USC BOILER

A24 SOBOTKA J., BINA V.*, HAKI J.*; VITKOVICE (CZECH REPUBLIC), *SVUM (CZECH REPUBLIC)
CREEP RUPTURE STRENGTH AND STRENGTH REDUCTION FACTOR OF WELD JOINTS IN BOILER TUBES OF TYPE 2.25Cr-1Mo STEEL

A25 TOHYAMA A., MINAMI Y.; NKK CORPORATION (JAPAN)
DEVELOPMENT OF 2Cr-Mo-W-Ti-V-B FERRITIC STEEL FOR ULTRA SUPER CRITICAL BOILERS (NKK TEMPALOY F-2W)

A26A KAN T., SAWARAGI Y., YAMADERA Y., OKADA H.; SUMITOMO METALLINDUSTRIES (JAPAN)
PROPERTIES AND EXPERIENCES OF A NEW AUSTENITIC STAINLESS STEEL SUPER 304H (0.1C-18Cr.9Ni.3Cu-Nb-N) TUBES FOR BOILER TUBE APPLICATION

A26B SAWAGARI, Y., KAN, T., YAMADERA, Y., MASUYAMA, F., YOKOYAMA, T., KOMAI, N. SUMITOMO METALLINDUSTRIES (JAPAN)
PROPERTIES AND EXPERIENCES FOR ALL PRODUCT FORMS OF GRADE 23 (HCM2S) STEEL FOR FOSSIL POWER GENERATION

A26C SAWAGARI, Y., KAN, T., YAMADERA, Y., MASUYAMA, F., YOKOYAMA, T., KOMAI, N. SUMITOMO METALLINDUSTRIES (JAPAN)
PROPERTIES AND EXPERIENCES FOR ALL PRODUCT FORMS OF GRADE 122 (HCM12A) STEEL FOR FOSSIL POWER GENERATION
A27 Nava-Paz J.C., Knödler R.*; ABB Power Plant Laboratories (USA), * ABB Forschungszentrum (Germany)
STEAM-SIDE OXIDATION OF FERRITIC STEELS

A28 Fukuda Y., Tamura K., Sato T.; Babcock-Hitachi (Japan)
STEAM OXIDATION PROPERTIES OF HIGH Cr FERRITIC STEELSA29Pugh J.A.. Mit5Ui Babcock Energy (Great Britain)

Sumitomo Metalind.. (Japan), *Ishikawajima-Harima Heavy Industries (Japan)
DEVELOPMENT OF A NEW HEAT RESISTANT AUSTENITIC STAINLESS STEEL FOR HIGH TEMPERATURE COMPONENTS OF POWER GENERATION

Universidad Complutense de Madrid (Spain), *Universidad de Vigo (Spain), **Universidad Jaume (Spain)
CORROSION PROTECTION OF AISI 304 Austenitic STEEL BY Y AND Er ION IMPLANTATION AGAINST ISOTHERMAL OXIDATION

A32 Deshayes F., Bendick W.*, Haarmann K.**, Vailant J. C.# ; Vallourec Research Centre (France), *Mannesmann Research Institute (Germany), **Vallourec and Mannesmann Tubes (Germany), #Vallourec and Mannesmann Tubes (France)
NEW 2.3% Cr STEEL GRADES FOR WATERWALL PANES AND SUPERHEATERS

Microstructure

A33 Schaffernak B., Hofer P., Cerjak H.; Technische Universität Graz (Austria)
DESCRIPTION OF THE PRECIPITATION BEHAVIOUR OF ADVANCED 9-12% Cr.STEELS FOR POWER PLANT APPLICATIONS

A34 Hättestrand M., Schwind M., Andren H.O.; Chalmers University of Technology (Sweden)
HIGH RESOLUTION MICROANALYSIS OF CHROMIUM STEELS P92 AND P122

A35 Spigarelli S., Cerri E., Evangelista E., Bianchi P.*; University of Ancona (Italy), *ENEUSRI (Italy)
EFFECT OF MICROSTRUCTURAL EVOLUTION OF A T91 STEEL DURING CREEP

A36 Hofer P., Cerjak H., Warbichler P.; Technical University of Graz (Austria)
QUANTITATIVE EVALUATION OF PRECIPITATES IN THE MARTENSITIC CAST STEEL G-X12CrMoWVNbN10-1.1

A37 Zielinska-Lipiec A., Czyrska-Filemonowicz A., Ennis P.J.*, Wachter 0.**
University of Mining and Metallurgy (Poland), *Forschungszentrum Jülich (Germany), **PreussenElektra (Germany)
MICROSTRUCTURAL INVESTIGATIONS OF 9% Cr STEEL P92 AFTER LONG-TERM CREEP DEFORMATION

A38 Nowakowski P. Straube H.*, Spiradek K., Zeiler G.**; Austrian Research Centre Seibersdorf (Austria),
*Technical University of Vienna (Austria), **Boehler-Edelstahl (Austria)
MICROSTRUCTURAL EVOLUTION DURING CREEP OF THE NEW MODIFIED 9% Cr STEEL WITH BORON AND COBALT

A39 Sawada K., Takeda M., Maruyama K., Ishii R.*, Yamada M.* Tohoku University (Japan), *Toshiba Corp. (Japan)
DISLOCATION SUBSTRUCTURE DEGRADATION DURING CREEP OF MARTENSITIC HEAT- RESISTING STEELS WITH AND WITHOUT W
A40 Kasl J., Kaska V.; Skoda Research (Czech Republic)
MICROSTRUCTURAL INVESTIGATION OF ADVANCED CREEP RESISTANT 10% Cr STEEL

A41 Kadoya Y., Dyson B.F.*, Mclean M.*; Mitsubishi Heavy Industries (Japan), *Imperial College of Science (Great Britain)
MICROSTRUCTURAL STABILITY DURING CREEP OF Mo.AND/OR W.BEARING 12Cr STEELS

A42 Strang A., Vodarek V.*; GEC Alsthom large Steam Turbines (Great Britain), *Materials Research Institute (Czech Republic)
MICROSTRUCTURAL DEGRADATION OF MARTENSITIC 12% Cr POWER PLANT STEELS DURING PROLONGED HIGH TEMPERATURE CREEP EXPOSURE

A43 Weinert P., Buchmayr B., Cerjak H.; Technical University of Graz (Austria)
MICROSTRUCTURAL PHYSICALLY BASED CREEP MODELING

A44 Pigrova G.D.; Central Boiler and Turbine Institute (Russia)
PRECIPITATION OF CARBIDE PHASES DEPENDING ON STEEL ALLOYING AND HEAT TREATMENT

A45 Kimura K., Abe F., Irie H., Yagi K.; National Research Institute for Metals (Japan)
LONG TERM CREEP AND CREEP RUPTURE PROPERTIES AND MICROSTRUCTURAL CHANGES OF HEAT RESISTANT STEELS

A46 Igarashi M., Muneki S., Abe S.; National Research Institute for Metals (Japan)
MICROSTRUCTURE CONTROL OF MARTENSITIC PHASE MATRIX IN ADVANCED FERRITIC STEELS FOR USC BOILERS TO ACHIEVE LONG TERM STABILITY AT HIGH TEMPERATURES

A47 Di Gianinesco, A. Tassa 0., Cumino G.* Centro Sviluppo Materiali S.p.A. Rome (Italy), *Dalmine Plant S.p.k, Daimine (BG) Italy
PROPERTIES AND MICROSTRUCTURE OF MODIFIED 9Cr STEELS

Posters B: Materials for Corrosion Resistant Heat Exchangers

B1 Cizner J., Pitter J., Kadlec J., Hakl J.; SVUM (Czech Republic)
CORROSION BEHAVIOUR OF SOME STEELS AND ALLOYS IN COAL GAS ENVIRONMENT

B2 Montgomery M.; Technical University of Denmark (Denmark)
LABORATORY INVESTIGATION OF HIGH TEMPERATURE CORROSION IN STRAW-FIRED POWER PLANTS

B3 Hakl J., Brna V., Cizner J., Vlasak T.; SVUM (Czech Republic)
INFLUENCE OF SULPHIDIZING.OXIDIZING ENVIRONMENT ON CREEP BEHAVIOUR OF SOME HIGH TEMPERATURE MATERIALS

B4 Mayrhuber J., Cerjak H.*; Verbundplan/Drauconsulting (Austria), *Technical University of Graz (Austria)
THE ROLE OF MATERIALS IN MAXIMIZING THE ENERGY UTILISATION FROM SOLID WASTE FUELS-RECENT DEVELOPMENTS IN MATERIALS OPTIMIZATION AND PROCESS DESIGN

B5 Rademakers P.I.F., Wetzel R.W.A.*, Kokmeijer E.**; TNO Industrie (The Netherlands), *Royal Scheide Boilers (The Netherlands), **KEMA Nederland (The Netherlands)
INCREASE OF WASTE INCINERATOR POTENTIAL BY ADVANCED SUPERHEATERS

Elkraft Power Company (Denmark), * Ansaldo V01und R & D Centre (Denmark), **/S Fynsväket (Denmark), #RIS0 (Denmark), ### Ansaldo V01und Contract Division (Denmark), ####Danish Teschnical University (Denmark)
CORROSION TESTING OF SUPERHEATER MATERIALS FOR USE IN WASTE AND BIOMASS FIRED COMBINED HEAT AND POWER PLANTS
B7 Holmström S., Siren M., Heikinheimo L., Auerkari P., Varmavuo J.*, Saarinen R,** VTT Manufacturing Technology (Finland), *Pohjolan Voima Group (Finland), **Folster Wheeler Service Oy (Finland)
PERFORMANCE OF AN IRON BASED ODS ALLOY IN A BOILER ENVIRONMENT

B8 Dutheillet Y.; Prunier V. EDF (France)
EVALUATION OF THE EROSION-CORROSION RESISTANCE OF COATED METALLIC MATERIALS FOR CFBCs APPLICATIONS

B9 Schroer C., Spiegel M., Grabke H.J.; Max-Planck-Institut für Eisenforschung (Germany)
CORROSION RESISTANT COATING MATERIALS FOR HEAT EXCHANGER TUBES IN WASTE INCINERATION PLANTS

B10 Soudarev A.V., Grishaev V.V., Soudarev B.V.; Joint Stock Company (Russia)
CERAMIC HEAT EXCHANGE APPARATUS FOR HIGH-TEMPERATURE GAS TURBINES

B11 Moret F., Sire P., Gasse A.; CEA -CEREM (France)
BRAZING OF SiC USING THE BraSiCe PROCESS FOR CHEMICAL AND THERMAL APPLICATIONS

B12 Osgerby S., Saunders S.R.J., Banks J.P., Gohil D.D. National Physical Laboratory (Great Britain)
MECHANICAL PROPERTIES OF HIGH TEMPERATURE CORROSION SCALES ON MATERIALS FOR HIGH TEMPERATURE HEAT EXCHANGERS

B13 Chao J., Cristina M.C., Gonzalez-Carrasco J.L., Gonzalez-Doncel G. Centro Nacional de Investigaciones Metalurgicas (Spain)
INFLUENCE OF PROCESSING ON THE MECHANICAL PROPERTIES OF MA956 ALLOY

B14 Wilber J.P., Bennett M.J.*, Nicholls J.R. Cranfield University (Great Britain), * Materials Research Consultant (Great Britain)
FAILURE MODES OF ALUMINA SCALES ON FeCrAlRE ALLOYS

B15 Großmann, G.K., Klöwer, J.; Krupp-VDM (Germany)
HIGH TEMPERATURE MATERIALS IN THERMAL WASTE TREATMENT PLANT APPLICATIONS: CORRELATION OF PLANT PERFORMANCE DATA WITH SIMULATED LABORATORY TESTS
Posters C: Materials for Gas Turbines

Turbine Blade Materials

C1 Engler-Pinto Jr. C.C., Rezai-Aria F.*
Escola de Engenharia de São Carlos (Brazil). *Ecole des Mines d. Albi-Carmaux (France)
A COMPARATIVE INVESTIGATION ON THE THERMO-MECHANICAL FATIGUE BEHAVIOUR OF THREE Ni-BASE SUPERALLOYS

DEVELOPMENT AND CHARACTERISATION OF A HIGH STRENGTH SINGLE CRYSTAL SUPERALLOY sMP14

Rolls-Royce (Great Britain). * Allison Engine Company (USA). **Cannon.Muskegon Corp. (USA)
IMPROVED PERFORMANCE CMSX-4e ALLOY TURBINE BLADES UTILISING PPM LEVELS OF LANTHANUM AND YTTRIUM

C4 Schubert F., Steinhans T., Fleury G.; Forschungszentrum Jülich (Germany)
ANISOTROPIC CONSTITUTIVE EQUATIONS FOR THE VISCOPLASTIC BEHAVIOUR OF THE SINGLE CRYSTAL SUPERALLOY CMSX.4

C5 White P.S.; GEC Alsthom (Great Britain)
AN INVESTIGATION OF THE ANISOTROPY OF THE SECONDARY CREEP RATE IN CMSX4

C6 Chen W., Wahi R.P.; Hahn-Meitner-Institut Berlin (Germany)
CREEP-FATIGUE BEHAVIOUR OF POLYCRYSTALINE AND SINGLE CRYSTAL Ni-BASE SUPERALLOYS IN738LC AND sC16

C7 Kobayashi T., Koizumi Y., Harada H., Yamagata T., Tamura A.*, Nitta S.*
National Research Institute for Metals (Japan). *Kawasaki Heavy Industries (Japan)
DESIGN OF A 3rd GENERATION Ds SUPERALLOY TMD.13

THIRD GENERATION SC SUPERALLOYS WITH EXCELLENT PROCESSABILITY AND PHASE STABILITY

DEVELOPMENT OF A NEW Ni-BASED SINGLE CRYSTAL ALLOY FOR LARGE SIZED BUCKETS

C10 Pellerin F., Guichard D.*, Raisson G.**, Moret F.
Turboecca (France). *SEP (France). **Tecphy (France). ~CEA-CEREM (France)
HIGH PERFORMANCE AND HIGH COMPLEXITY NET SHAPE PARTS FROM POWDER METALLURGY: THE ISOPREC PROCESS

HIGH TEMPERATURE MEASUREMENT OF y/y' LATTICE MISFITS IN THIRD GENERATION Ni-BASE SUPERALLOY

DESIGN OF A HIGH Re CONTAINING SINGLE CRYSTAL SUPERALLOYS FOR INDUSTRIAL GAS TURBINES
C13 Murakami H., Osawa M.*, Yokokawa T., Koizumi Y., Yamagata T., Harada H.; National Research Institute for Metals (Japan), *New Energy and Industrial Technology Development Org. (Japan)
THE LOCATION OF ATOMS IN Ir-CONTAINING Ni-BASE SINGLE CRYSTAL SUPERALLOYS

C14 Yamabe-Mitarai Y., Ro Y., Maruko T.*, Yokokowa T., Gu Y., Harada H.
National Research Institute for Metals (Japan), *Furuya Metals Co (Japan)
PRECIPITATE SHAPE DEPENDENCE OF STRENGTH IN Ir-BASE REFRAMTORY SUPERALLOYS

HOT CORROSION PROPERTIES OF Ni-BASE SINGLE CRYSTAL SUPERALLOYS IN BURNER RIG TEST

C16 Yuan C., Guo J., Yang H.C.* Chinese Academy of Science (Republic of China), *Northeastern University Shenyang (Republic of China)
EFFECT OF GRAIN BOUNDARY ORIENTATION ON CREEP AND FRACTURE BEHAVIOR OF A DIRECTIONALLY SOLIDIFIED Ni-BASE SUPERALLOY

C17 Kamaraj M., Neuking K., Kolbe M., Eggeler G.; Ruhr-Universität Bochum (Germany)
HIGH TEMPERATURE DOUBLE SHEAR CREEP DEFORMATION OF Ni-BASE SUPERALLOY SINGLE CRYSTALS

C18 Rieck T., Schubert F.; Forschungszentrum Jülich (Germany)
FATIGUE CRACK GROWTH OF SMALL CRACKS IN THE SINGLE CRYSTAL SUPERALLOYS SC16 AND CMSX-4

Turbine Disc Materials

C19 Chateau E., Remy L., Dolet-Berge N.*, Fournier D.*, Ecole Nationale Superieure des Mines de Paris (France), *Turbomeca (France)
CREEP AND CREEP-FATIGUE BEHAVIOUR OF UDIMIT 720 AT 850 °C

C20 Neves S., Penkalla H.J., Schubert F., Singheiser L. Forschungszentrum Jülich (Germany)
FATIGUE CRACK GROWTH AND TENSILE DEFORMATION OF THE PM SUPERALLOY N18: MICROSTRUCTURAL INVESTIGATIONS

Intermetallics

C21 Dlouhy A., Kuchafova K., Horkel T.; Academy of Sciences (Czech Republic)
CREEP AND MICROSTRUCTURE OF NEAR γ-TiAl INTERMETALLICS

C22 Lundström D., Knutson-Wedel M., Karlsson B.; Chalmers University of Technology (Sweden)
MICROSTRUCTURES, DEVELOPING DEFECTS, AND CREEP BEHAVIOUR IN A γ-TiAl BASED ALLOY FOR GAS TURBINE APPLICATIONS

C23 Lupinc V., Yin W.M.*, Maldini M.; CNR-TeMPE (Italy), *Chinese Academy of Sciences «Republic of China)
MICROSTRUCTURE AND CREEP RESISTANCE AT 650-750 °C OF THE Ti-47Al-2W-0.5Si CAST ALLOY

C24 Onofrio G., Marchionni M.; CNR-TeMPE (Italy)
HIGH TEMPERATURE FATIGUE BEHAVIOUR OF γ-TiAl BASE INTERMETALLIC ALLOY

C25 Recina V., Remy L.*, Marchionni M.*, Guardamagna C.#
Volvo Aero Corp. (Sweden), *Ecole des Mines de Paris (France). **CNR-TeMPE (Italy), #ENEUSRI (Italy)
LOW CYCLE FATIGUE OF THE γ-BASED ALLOY Ti-48Al-2W-0.5si
C26 Tiainen T., Kuokkala V.T., Hynnä A., Huang H. Tampere University of Technology (Finland)
HIGH TEMPERATURE FATIGUE PROPERTIES AND RELATED MICROSTRUCTURES OF GAMMA TIAl INTERMETALLIC ALLOYS

C27 Bianchi P., Bontempi P., Guardamagna C., Mariani R.; ENEL SpA/SRI-CRAM (Italy)
CREEP AND LOW CYCLE FATIGUE BEHAVIOUR OF A γ-TIAl FOR GAS TURBINE APPLICATION

C28 Nikbin K.M., Webster G.A.; Imperial College (Great Britain)
INFLUENCE OF STATE OF STRESS ON CREEP/FATIGUE FAILURE OF γ-TITANIUM ALUMINIDE TURBINE BLADE MATERIAL

C29 Shemet V., Hoven H., Lersch P., Singheiser L., Quadakkers W.J. Forschungszentrum Jülich GmbH (Germany),
THE EFFECT OF NOBLE ELEMENT ADDITIONS ON THE OXIDATION RESISTANCE OF γ-TIAl BASED ALLOYS

C30 Tomasi A., Gialanello S.*, Micheli V., Nazmy M.** Istituto di Ricerca Scientifica e Tecnologica (Italy), Universita di Trento (Italy), * * Abb Power Generation (Switzerland)
EARLY STAGES OF HIGH TEMPERATURE OXIDATION OF γ-TIAl ALLOYS: INFLUENCE OF W AND Si ADDITION

C31 Lugscheider E., Siry C.W., Saunders S.R.J.* RWTH Aachen (Germany), *National Physical Laboratory (Great Britain)
THE BEHAVIOUR OF PVD SiAlN-TYPE COATINGS DEPOSITED ON γTIAl

C32 Partridge A., Colvin J.J., Winstone M.R.; Structural Materials Centre (Great Britain)
THE EFFECT OF THERMO-MECHANICAL PROCESSING AND HEAT TREATMENT ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ORTHORHOMBIC ALLOYS

C33 Lapin J.; Slovak Academy of Sciences (Slovak Republic)
CREEP BEHAVIOUR OF DIRECTIONALLY SOLIDIFIED Ni3Al-BASED ALLOY

C34 Moret F., Baccino R., Revol S.; CEA ICEREM-DEM (France)
A NEW GENERATION FeAl ALLOY WITH ADVANCED PROPERTIES

Combustion Materials

C35 Kasik N., Meyer-Olbersleben F.*, Rezal-Aria F.**, Blümm M., Ilschner B.* ABB Power Generation (Switzerland),
*fraunhofer-Institute for Applied Materials Research (Germany), **Ecole des Mines d' Albi-Carmaux (France), 'MTU-Maintenance (Germany), "Federal Institute of Technology (Switzerland)
THERMAL FATIGUE BEHAVIOR OF THE COMBUSTOR ALLOYS IN 617 AND HAYNES 230

C36 Kleinpaß B., Lang K.-H.*, Löhne D.*, Macherauch E.* Linde (Germany), *Universität Karlsruhe (Germany)
INFLUENCE OF THE MINIMUM CYCLE TEMPERATURE ON THE THERMAL-MECHANICAL FATIGUE BEHAVIOUR OF NiCr22Co12Mo9

Life Assessment and Repair Techniques

C37 Murata Y., Morinaga M., Hashizume R.* Nagoya University (Japan). *The Kansai Electric Power Company (Japan)
TRACE OF THE EVOLUTION OF NI-BASED SUPERALLOYS BY THE d.ELECTRONS CONCEPT

C38 Bettge D., Möser T., Österle W.; Fed. Institute for Materials Research & Testing (Germany)
CRSS-ANISOTROPY AND TENSION-COMPRESSION ASYMMETRY OF A NICKEL-BASE SUPERALLOY
C39 Fujii H., Mc Kay D.J.C.*, Bhadeshia H.K.D.H.*, Harada H.*, Nogi K. Osaka University (Japan), *Darwin College (Great Britain), **National Research Institute for Metals (Japan)

ESTIMATION OF CREEP RUPTURE STRENGTH IN NICKEL BASE SUPERALLOYS

C40 Yoshioka Y., Saito D., Fujiyama K., Kashiwaya H. Toshiba Corporation (Japan)

LIFE ASSESSMENT TECHNIQUES FOR GAS TURBINE HOT-SECTION COMPONENTS

C41 Akaia N., Voorhees P.W.* National Research Institute for Metals (Japan), *Northwestern University (USA)

LARGE SCALE NUMERICAL SIMULATION OF PARTICLE COARSENING IN ELASTICALLY STRESSED SOLIDS

C42 v. Grossmann B., Biermann H., Mughrabi H. Universität Erlangen-Nürnberg (Germany)

MICROSTRUCTURAL Y BASED DETERMINATION OF THE LOWEST ACTING TEMPERATURE AND STRESS IN A TURBINE BLADE AFTER SERVICE

C43 Müller S., Rösler J.; Technische Universität Braunschweig (Germany)

LIFE EXTENSION OF SUPERALLOY DISCS BY PREVENTION OF STRESS ACCELERATED GRAIN BOUNDARY OXIDATION

C44 Bianchi P., Cernuschi F., Ferravante L.*, Scardi P.**, Setti S.** ENEL (Italy), *CISE SpA (Italy), **Università di Trento (Italy)

INTEGRITY ASSESSMENT OF HVOF REPAIRED INDUSTRIAL GAS TURBINE VANES

C45 Auburtin P., Cockcroft S.L., Mitchell A.; University of British Columbia (Canada)

FRECKLE FORMATION IN LARGE SUPERALLOY SINGLE CRYSTAL AIRFOIL CASTINGS

C46 Stubler J., Baumann R.**, Alliance Center for Technology (Germany), *ABB Power Generation (Switzerland)

ADVANCED REPAIR TECHNIQUES FOR MODERN INDUSTRIAL GAS TURBINES

Corrosion Resistant Coatings

C48 Clemens D., Vosberg V.R., Tietz F., Quadakkers W.J., Singheiser L.; Forschungszentrum Jülich (Germany)

EFFECT OF Ti ADDITIONS ON ISOTHERMAL AND CYCLIC OXIDATION OF NiCrAlY COATING ALLOYS FOR GAS TURBINE APPLICATION

C49 Krejci J., Svejcar J., Krejcova J., Ambroz O., JirikovskY K.; Techn. University of Bmo (Czech Republic)

ANNEALING OF NiCr- AND Ni-SUPERALLOY INTERFACES

C50 Angenete J., Stiller K.; Chalmers University of Technology (Sweden)

ISOTHERMAL OXIDATION BEHAVIOUR OF PLATINUM MODIFIED ALUMINIDE DIFFUSION COATINGS ON SINGLE CRYSTAL Ni BASED SUPERALLOY

C51 Swadzba L., Maciejny A., Mendala B., Pucka G.; Silesian Technical University (Poland)

HIGH TEMPERATURE RESISTANT MeCrAlY + Al COATINGS OBTAINED BY THE ARC-PVD METHOD ON Ni-BASE SUPERALLOYS

C52 Ellison K.A., Daleo J.A., Boone D.H.; BWD Turbines (Canada)

METALLURGICAL TEMPERATURE ESTIMATES BASED ON INTERDIFFUSION BETWEEN CoCrAlY OVERLAY COATINGS AND A DIRECTIONALLY SOLIDIFIED Ni-BASE SUPERALLOY SUBSTRATE

MICROSTRUCTURE AND HOT CORROSION BEHAVIOR OF Pt-Al COATINGS ON IN738 NICKEL- BASE SUPERALLOY

C54 Schütze M., Jeutter A.; Karl-Winacker-Institut der Dechema e.V. (Germany)

HIGH TEMPERATURE CORROSION RESISTANCE OF GAS TURBINE MATERIALS AND COATINGS UNDER THE INFLUENCE OF CI- CONTAMINATIONS
C55 Henderson P.J., Linde l.*; Vattenfall AB (Sweden), *Swedish Institute for Metals Research (Sweden)
CREEP OF COATED AND UNCOATED THIN SECTION CMSX.4

C56 Take K., Ohtani R.*, Kaku M., Takenaka T., Masuo H.*; Kawasaki Heavy Industries Ltd (Japan), *Kyoto University (Japan), **Kawasaki Heavy Industries (Japan)
LOW CYCLE AND THERMO MECHANICAL FATIGUE OF COATED IN738LC

C57 Cernuschi F., Netzelmann U.*, Pohl K.J.**; ENEI SpA (Italy), *Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren (Germany), **Qualitätszentrum Dortmund (Germany)
NONDESTRUCTIVE INTEGRITY CHARACTERISATION AND ASSESSMENT OF GAS TURBINE COATINGS WITHIN THE COST 501 PROGRAM

** Thermal Barrier Coatings

C58 Teixeira V., Andritschky M., Buchkremer H.P.*, Stöver D.* University of Minho (Portugal), *Forschungszentrum Jülich (Germany)
FAILURE MECHANISMS IN THERMAL CYCLED TBC'S

C59 Babiak Z., Bach Fr.W., Bertamini I.*, Hindryckx F.**, Krugers J.P., Michel B.**, Sturlese S.*, Unterberg W. Universität Dortmund (Germany), *Centro Sviluppo Materiali (Italy), **Techspace Aero (Belgium), H.C. Starck (Germany)
INNOVATIVE PLASMA SPRAYED 7% YSZ THERMAL BARRIER COATINGS FOR GAS TURBINES

C60 Teixeira V., Andritschky M., Fischer W., Buchkremer H.P.*, Stöver D.* University of Minho (Portugal), *Forschungszentrum Jülich (Germany)
RESIDUAL STRESSES IN HIGH TEMPERATURE MULTILAYERED COATINGS FOR ADVANCED POWER ENGINEERING

C61 Vaßen R., Tietz F., Kerkhoff G., Stöver D. Forschungszentrum Jülich GmbH (Germany)
NEW MATERIALS FOR ADVANCED THERMAL BARRIER COATINGS

C62 Rätzer-Scheibe H.J., Fritscher K., Peters M., Schulz U., Kaysser W.A.; DIR (Germany)
BURNER RIG TESTS OF EB PVD THERMAL BARRIER COATINGS UNDER HOT CORROSION CONDITIONS

C63 Schmackers T., Reimers W., Baron H.U.*. Cosack T.*
Hahn-Meitner-Institut Berlin (Germany), *Motoren-und Turbinen-Union München (Germany)
RESIDUAL STRESSES IN ZIRCONIA THERMAL BARRIER COATINGS DUE TO STRONGLY INHOMOGENEOUS TEMPERATURE DISTRIBUTIONS

C64 Martin U., Oettel H., Jerenz M., Mühle U.; Freiberg University of Mining & Technology (Germany)
MICROSTRUCTURE AND MODELLING OF COATED SUPERALLOYS

** Repair Techniques and Life Assessment

C65 Kerkhoff G., Vaßen R., Funke C., Stöver D. Forschungszentrum Jülich GmbH (Germany)
FINITE ELEMENT ANALYSIS OF THERMAL STRESSES IN THERMAL BARRIER COATINGS ON CYLINDRICAL SUBSTRATES

C66 Krukovsky P.G., Kartavova E.S.; National Academy of Science (Ukraine)
NUMERICAL SOLUTION OF INVERSE PROBLEM FOR DIFFUSION AND CORROSION PROCESSES IN MATERIALS FOR GAS TURBINE

C67 Kartavova E.S., Krukovsky P.G.; National Academy of Science (Ukraine)
LIFE TIME MODELLING FOR MCrAlY COATINGS OF GAS TURBINE BLADES
C68 Mezzedimi V., Giorni E., Tognarelli L., Pratesi F.*, Zonfrillo G.*, Giannozzi M., Innocenti M. Nuovo Pignone (Italy), *University of Florence (Italy)
ASSESSMENT OF TURBINE HOT GAS PATH COMPONENTS

C69 Swadzba L, Dudek S.*, Hetmanczyk H., Mendala B., Szala J. Silesian Technical University (Poland), *Transport Equipment Enterprise (Poland)
AN INFLUENCE OF THE STRUCTURE OF THE THERMAL BARRIER COATINGS ON THERMAL SHOCK AND HOT CORROSION RESISTANCE

C70 Pigrova G.D.; Central Boiler and Turbine Institute (Russia)
THE SURFACE STRUCTURE OF GAS TURBINE BLADES

C71 Rybnikov A.I., Getsov L.B., Osyka A.S., Muhametganov K.S. Pulzunov Central Boiler and Turbine Institute (Russia)
HEAT TREATMENT OF GAS TURBINE BLADES WITH PROTECTIVE COATINGS

C72 Ranc, R., Perez. M., Schuster, F.
ELABORATION OF A YSZ POWDER BY SPRAY DRYING FOR THERMAL BARRIER COATINGS
ON GAS TURBINE COMPONENTS

Posters D: General Interest

Japan Atomic Energy Res. Institute (Japan), *National Research Institute for Metals (Japan), **Power Reactor and Nuclear Fuel Development Corp. (Japan), #Japan Science and Technology Corp. (Japan)
DISTRIBUTED DATABASE SYSTEM FOR MUTUAL USAGE OF MATERIAL INFORMATION (DATA-FREE-WAY)

D6 Witthohn A., Oeltjen L., Hilpert K.; Forschungszentrum Jülich (Germany)
NEW SOFTWARE TOOLS FOR THE ASSESSMENT AND INDUSTRIAL USE OF CREEP AND CREEP RUPTURE DATA

D6 Witthohn A., Oeltjen L., Hilpert K.; Forschungszentrum Jülich (Germany)
ALKALI RELEASE AND SORPTION IN COAL COMBUSTION