Contents

1 Introduction 1

2 Fundamentals 7
 2.1 Structural Properties of Microcrystalline Silicon 7
 2.2 Electronic Density of States 9
 2.2.1 Band-Tail States 10
 2.2.2 Deep Defects 11
 2.3 Charge Carrier Transport 14
 2.3.1 Barrier Limited Transport 15
 2.3.2 Dispersive Transport in Disordered Semiconductors 15

3 Sample Preparation and Characterization 19
 3.1 Characterization Methods 19
 3.1.1 Raman Spectroscopy 19
 3.1.2 Electron Spin Resonance (ESR) 21
 3.1.3 Electrical Conductivity 24
 3.1.4 Transient Photocurrent Measurements (TOF) 24
 3.1.5 Thickness Measurements 30
 3.2 Deposition Technique 32
 3.2.1 Plasma-Enhanced Chemical Vapor Deposition (PECVD) 32
 3.2.2 Hot-Wire Chemical Vapor Deposition (HWCVD) 33
 3.3 Sample Preparation ... 34
 3.3.1 Sample Preparation for ESR and conductivity measurements 35
 3.3.2 PIN-Diodes for Transient Photocurrent Measurements 36

4 Intrinsic Microcrystalline Silicon 39
 4.1 Raman Spectroscopy 39
 4.2 Electrical Conductivity 41
 4.3 ESR Signals and Paramagnetic States in Intrinsic μc-Si:H 42
 4.4 Discussion - Relation between ESR- and Structural Properties 47
 4.5 Summary .. 50
CONTENTS

5 N-Type Doped μc-Si:H 51
 5.1 Structure Characterization 51
 5.2 Electrical Conductivity 52
 5.3 ESR Spectra .. 54
 5.4 Dangling Bond Density 55
 5.5 Conduction Band-Tail States 57
 5.6 Discussion ... 59
 5.7 Summary ... 61

6 Reversible and Irreversible Effects in μc-Si:H 63
 6.1 Metastable Effects in μc-Si:H 63
 6.1.1 Influences of Sample Preparation 63
 6.1.2 Reversible Effects in the ESR Signal 70
 6.1.3 Reversible Effects in the Electrical Conductivity 73
 6.2 Irreversible Oxidation Effects 75
 6.2.1 Reversibility by Chemical Reduction 77
 6.2.2 Charge Transfer caused by Oxidation of N-Type μc-Si:H 78
 6.3 On the Origin of Instability Effects in μc-Si:H 80
 6.3.1 Adsorption of Atmospheric Gases 80
 6.3.2 Irreversible Effects caused by Oxidation 84
 6.4 Summary ... 84

7 Transient Photocurrent Measurements 85
 7.1 Electric Field Distribution 85
 7.2 Transient Photocurrent Measurements 87
 7.2.1 Non-Uniform Electric Field Distribution 87
 7.2.2 Uniform Electric Field Distribution 90
 7.3 Temperature Dependent Drift Mobility 93
 7.4 Multiple Trapping in Exponential Band-Tails 94
 7.5 Discussion ... 96
 7.5.1 Photocurrent and Photocharge Transients 97
 7.5.2 Hole Drift Mobilities 98
 7.5.3 The Meaning of Multiple Trapping 99

8 Schematic Density of States 101

9 Summary 105

A Algebraic Description of the Multiple Trapping Model 107

B List of Samples 111
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C Abbreviations, Physical Constants and Symbols</td>
<td>115</td>
</tr>
<tr>
<td>Bibliography</td>
<td>119</td>
</tr>
<tr>
<td>Publications</td>
<td>135</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>137</td>
</tr>
</tbody>
</table>